首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
不同农业景观结构对麦蚜种群动态的影响   总被引:4,自引:0,他引:4  
赵紫华  石云  贺达汉  杭佳  赵映书  王颖 《生态学报》2010,30(23):6380-6388
研究表明农业景观结构的复杂性与害虫种群发生强度关系密切,然而在不同农业景观结构下研究麦蚜的发生、种群及寄生蜂的变化还不多。设计了不同的麦田景观结构,调查研究了不同麦田景观结构对麦蚜种群的影响。在简单与复杂两种农业景观结构下,分析了不同种类麦蚜的入田时间、入田量、种群增长率、种群密度及寄生性天敌的多样性与寄生率。结果表明:景观结构对不同种类麦蚜影响不同,但复杂农业景观下麦蚜迁飞入田时间都要晚于简单农业景观(连片种植)下的入田时间,复杂农业景观下有翅蚜的迁入量显著低于简单景观下有翅蚜的迁入量,并且复杂农业景观下麦蚜种群增长速率高于简单农业景观下的增长速率。不同种类麦蚜对景观结构的不同反应可能与形态学与生活史特征有关,两种不同农业景观结构下寄生性天敌的多样性与寄生率无显著差异。复杂景观结构下的麦蚜有翅蚜低的迁入量、高的增长速率可能与生境高度破碎化有关,其中与温室大棚塑料白色反光有的很大的影响。生境破碎化影响了麦蚜对寄主植物寻找以及天敌对猎物的寻找效应。  相似文献   

2.
大量研究表明多样性的农业景观格局能够影响蚜虫及寄生蜂的分布。本文利用并设计了两种尺度的麦田农业景观格局,依据麦蚜种群发生特点,分为迁入期、增长期与高峰期三个时期,论述了不同尺度下农业景观元素对麦蚜及寄生蜂系统的影响,通过逐步回归筛选了不同时期麦蚜及寄生蜂分布的关键景观元素,最后通过CANOCO软件模拟了麦蚜及寄生蜂的分布排序格局。结果表明不同景观因子对麦蚜及寄生蜂种群影响不同,迁入期两种尺度下裸地最有利于两种有翅蚜的迁飞入田,塑料大棚对有翅蚜种群的入田有抑制作用。增长期草地与林地生境对麦蚜种群增长率促进最大,塑料大棚同样抑制了麦蚜的种群增长率;但塑料大棚、草地与林地对蚜茧蜂的种群增长率有促进作用,非麦类作物生境对蚜茧蜂种群增长率抑制作用最大;草地与林地有利于重寄生蜂的种群增长率;高峰期裸地比例大的农业景观下麦蚜的最大种群密度较大,草地与林地对蚜茧蜂与重寄生蜂的最大种群密度均有促进作用。两种尺度下的研究结果一致。不同麦物种的对不同景观元素反应与形态学与生活史特征有关,而且景观结构中特定的植物种类、非作物植物的密度与物候期都可能影响寄生蜂群落的多样性与功能。  相似文献   

3.
关晓庆  刘军和  赵紫华 《生态学报》2013,33(14):4468-4477
农业景观格局与过程能够强烈影响寄生蜂对寄主的寻找及寄生作用,寄主密度亦是影响寄生蜂分布的重要因素,然而农业景观的格局和寄主密度对寄生蜂寄生率的相互影响是一项值得研究的工作.在简单与复杂2种麦田农业景观结构下,调查了麦蚜的分布格局与2种寄主密度下麦蚜的初寄生率与重寄生率,分析了景观结构对麦蚜密度的影响、景观格局与麦蚜密度对寄生蜂寄生率与重寄生率的影响及交互作用.结果表明:景观结构的复杂性对麦蚜分布和寄生蜂初寄生率与重寄生率的影响均不明显,但寄主密度与景观结构的复杂性对寄生蜂的影响存在着明显的交互作用,寄主密度与寄生率呈正相关,寄主密度较低时烟蚜茧蜂为优势种,寄主密度较高时燕麦蚜茧蜂为优势种.麦蚜初寄生蜂与重寄生蜂对寄主密度的反应与其形态学、体型大小以及生活史特征相关,初寄生蜂与重寄生蜂的群落组成显著影响其对麦蚜的寄生率,而与景观结构的复杂性关系不大.  相似文献   

4.
最小适生面积(MASH)指在一定的时空范围内物种能稳定存在的最小生境面积,它是种群生存力分析(PVA)的重要方法之一.本文采用基于种群数量-面积关系原理的MASH模型模拟了银川平原设施农业景观下破碎化麦田麦蚜、初寄生蜂与重寄生蜂种群发生的MASH.研究表明:密度 面积、增长速度-面积关系模型间存在反比例函数关系,不同物种存在的函数关系明显不同,尤其在不同营养级别的物种间,其函数关系差异更为明显.根据密度-面积关系,利用多项式回归模型计算了麦二叉蚜、麦长管蚜、燕麦蚜茧蜂、烟蚜茧蜂与蚜虫宽缘金小蜂的MASH,其营养级间的MASH差异显著.不同物种的MASH与营养级高低、体型大小、生境质量等有关.初寄生蜂最高的寄生率出现在800~1000 m2,可作为利用初寄生蜂自然控制麦蚜的依据,而不同营养级物种MASH差异可用于害虫的种群控制.  相似文献   

5.
刘军和  禹明甫 《昆虫知识》2013,50(4):912-920
农业景观结构影响昆虫的物种组成与多样性,本文选择复杂景观和简单景观的麦田景观为研究对象,研究了不同麦田景观结构对麦蚜天敌种群的影响。在简单与复杂两种景观下,分析了麦蚜寄生蜂和捕食性天敌的迁入时间、迁入量、种群增长率及种群密度之间的差异。结果表明:复杂景观中麦蚜寄生蜂和捕食性天敌的物种多样性较高,复杂景观下寄生蜂的迁入量高于简单景观下寄生蜂的迁入量。景观复杂性同样影响捕食性天敌的迁入时间,且捕食性天敌在复杂景观下迁入量均高于简单景观,而且存在显著性差异。两种景观中寄生蜂和捕食性天敌种群增长速率与最大种群密度均存在显著性差异。  相似文献   

6.
北京密云农业景观步甲群落空间分布格局   总被引:9,自引:0,他引:9  
采用陷阱法对北京密云县西田各庄南部农业景观中玉米地、花生地、果园及半自然林地4种典型生境中的步甲群落进行调查分析.结果表明: 果园步甲群落α多样性最高,花生地最低,林地与玉米地居中,且二者无显著差异;林地、花生地及果园的步甲群落结构明显不同,但均与玉米地的步甲群落结构有不同程度的相似性.果园维持着较多的捕食性步甲和兼食性步甲个体数;且不同生境间捕食性步甲的物种周转率与兼食性步甲的差异更明显.低集约化的果园生境可能较半自然生境林地维持更高的步甲群落α多样性,但多样化的景观组成有利于维持步甲群落及捕食性步甲较高的β多样性.重视景观多样性和低集约化农田生境的保护对保护农业景观步甲群落多样性和实现其害虫控制功能具有重要的意义.  相似文献   

7.
通过定点调查橡胶盔蚧Parasaissetia nigra Nietner和寄生蜂种群消长动态及农药影响橡胶盔蚧寄生蜂寄生率的试验,分析评价寄生蜂在控制橡胶盔蚧上的可利用性及探讨橡胶盔蚧的综合防治技术.结果表明:寄生蜂种群消长变化趋势与橡胶盔蚧基本一致.橡胶盔蚧成虫和若虫的发生以及寄生蜂种群寄生率周年均出现3个高峰,成...  相似文献   

8.
非稻田生境褐飞虱卵寄生蜂群落动态   总被引:2,自引:0,他引:2  
对稻田周围田埂和路边上能寄生褐飞虱的卵寄生蜂群落的动态进行了初步研究。研究结果表明:冬季休耕期,卵寄生蜂群落变化趋势为先降后升;夏季休耕期,因为水稻收割,部分寄生蜂迁移到田埂和路边,卵寄生蜂数量呈直线上升趋势;早稻生长期,田埂和路边的飞虱卵寄生蜂的数量变化同稻田褐飞虱卵寄生蜂和褐飞虱呈正相关的关系;晚稻移栽后,田埂和路边上飞虱卵寄生蜂数量下降,以后在一定的范围内波动,晚稻后期,数量急剧上升随后很快下降,害虫防治史影响着稻田周围生境中8飞虱卵寄生蜂群落,综防区试验田周围生境中飞虱卵寄生蜂群落的寄生蜂数量、物种丰富度、多样性指数和均匀性指数均优于非综防区。  相似文献   

9.
【目的】阐明棉花生境面积变化及其破碎化对烟粉虱Bemisiatabaci种群的作用规律,为合理利用作物布局进行害虫生态调控提供理论支撑。【方法】采用国际流行的微景观试验模型系统(Experimental model landscape system,EMLS)进行试验设计,田间条件下连续两年研究了棉花生境面积变化(20%、40%、60%、80%和100%;其他为玉米生境面积)及2种极端破碎化(完全连通C clumped:H=1.0;完全破碎F fragmented:H=0.0)下烟粉虱种群数量变化,采用广义线性模型(GLM)分析各因素对烟粉虱种群数量的影响。【结果】棉花生境面积及其破碎化单独作用时均对烟粉虱种群数量无显著影响,而取样时间则有显著影响。烟粉虱种群数量也没有受到取样时间与棉花生境面积、取样时间与破碎化以及三者交互作用的显著影响。但是,棉花生境面积与破碎化的互作效应则存在年度变化,2014年无显著作用,2015年显著影响烟粉虱种群。当棉花生境面积较小(20%)或较大(80%)时,破碎化程度高,烟粉虱种群数量少;棉花生境面积中等(40%和60%)时,破碎化程度低,烟粉虱种群数量少。【结论】烟粉虱种群对棉花生境面积变化有较强的适应性,而生境破碎化只能在一定程度上产生影响。  相似文献   

10.
非稻田生境中稻飞虱卵寄生蜂群落结构研究   总被引:1,自引:0,他引:1  
研究发现稻田周围田埂、路边禾本科杂草上栖息着能寄生于稻飞虱卵的寄生蜂有缨小蜂科和赤眼蜂科两类,它们是非稻田生境中稻飞虱卵寄生蜂群落的重要成员.群落中,缨小蜂科数量较多,其四个属中,数量上Anagrus>Gonatocerus>Neurotes>Mymar;赤眼蜂科数量较少,所占比率小于9%.非综防区化学农药的毒性和残效加重了生境中寄生蜂生存压力,造成群落中多个物种占有优势地位,而稻飞虱主要天敌-缨小蜂的优势被削弱,不如综防区群落中缨小蜂的优势地位突出.  相似文献   

11.
The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important trophic interactions, such as biological control. Natural enemies of herbivorous pests in cropping systems often benefit from the presence of natural habitats in surrounding landscapes, as they provide key resources such as alternative hosts. However, any benefits from a biological control perspective may be dampened if this also enhances enemies at the fourth trophic level. Remarkably, studies of the influence of landscape structure on diversity and interactions of fourth trophic‐level natural enemies are largely lacking. We carried out a large‐scale sampling study to investigate the effects of landscape complexity (i.e. the proportion of non‐crop habitat in the landscapes surrounding focal study areas) on the parasitoid communities of aphids in wheat and on an abundant extra‐field plant, stinging nettle. Primary parasitoid communities (3rd trophic level) attacking the cereal aphid, Sitobion avenae, had little overlap with the communities attacking the nettle aphid, Microlophium carnosum, while secondary parasitoids (4th trophic level) showed high levels of species overlap across these two aphids (25 vs 73% shared species respectively), resulting in significantly higher linkage density and lower specialization for secondary than primary parasitoid webs. In wheat, parasitoid diversity was not related to landscape complexity for either primary or secondary parasitoids. Rates of primary parasitism were generally low, while secondary parasitism rates were high (37–94%) and increased significantly with increasing landscape complexity, although this pattern was driven by a single secondary parasitoid species. Overall, our results demonstrate that extra‐field habitats and landscape complexity can differentially benefit fourth, over third, trophic level natural enemies, and thereby, could dampen biological control. Our results further suggest that fourth trophic‐level enemies may play an important, yet understudied, role in linking insect population dynamics across habitat types.  相似文献   

12.
Question: Which are the plant functional groups responding most clearly to agricultural disturbances? Which are the relative roles of habitat availability, landscape configuration and agricultural land use intensity in affecting the functional composition and diversity of vascular plants in agricultural landscapes? Location: 25 agricultural landscape areas in seven European countries. Methods: We examined the plant species richness and abundance in 4 km × 4 km landscape study sites. The plant functional group classification was derived from the BIOLFLOR database. Factorial decomposition of functional groups was applied. Results: Natural habitat availability and low land use intensity supported the abundance and richness of perennials, sedges, pteridophytes and high nature quality indicator species. The abundance of clonal species, C and S strategists was also correlated with habitat area. An increasing density of field edges explained a decrease in richness of high nature quality species and an increase in richness of annual graminoids. Intensive agriculture enhanced the richness of annuals and low nature quality species. Conclusions: Habitat patch availability and habitat quality are the main drivers of functional group composition and plant species richness in European agricultural landscapes. Linear elements do not compensate for the loss of habitats, as they mostly support disturbance tolerant generalist species. In order to conserve vascular plant species diversity in agricultural landscapes, the protection and enlargement of existing patches of (semi‐) natural habitats appears to be more effective than relying on the rescue effect of linear elements. This should be done in combination with appropriate agricultural management techniques to limit the effect of agrochemicals to the fields.  相似文献   

13.
Decline in landscape complexity owing to agricultural intensification may affect biodiversity, food web complexity and associated ecological processes such as biological control, but such relationships are poorly understood. Here, we analysed food webs of cereal aphids, their primary parasitoids and hyperparasitoids in 18 agricultural landscapes differing in structural complexity (42-93% arable land). Despite little variation in the richness of each trophic group, we found considerable changes in trophic link properties across the landscape complexity gradient. Unexpectedly, aphid-parasitoid food webs exhibited a lower complexity (lower linkage density, interaction diversity and generality) in structurally complex landscapes, which was related to the dominance of one aphid species in complex landscapes. Nevertheless, primary parasitism, as well as hyperparasitism, was higher in complex landscapes, with primary parasitism reaching levels for potentially successful biological control. In conclusion, landscape complexity appeared to foster higher parasitism rates, but simpler food webs, thereby casting doubt on the general importance of food web complexity for ecosystem functioning.  相似文献   

14.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

15.
Ecosystem processes in agricultural landscapes are often triggered by resource availability in crop and noncrop habitats. We investigated how oilseed rape (OSR; Brassica napus, Brassicaceae) affects noncrop plants in managed systems and semi-natural habitat, using trophic interactions among wild mustard (Sinapis arvensis, Brassicaceae), rape pollen beetles (Meligethes aeneus, Nitidulidae) and their parasitoids (Tersilochus heterocerus, Ichneumonidae). We exposed wild mustard as phytometer plants in two cropland habitat types (wheat field, field margin) and three noncrop habitat types (fallow, grassland, wood margin) across eight landscapes along a gradient from simple to complex (quantified as % arable land). Both landscape and local factors affected the abundance of rape pollen beetles and parasitoids. Rape pollen beetle infestation and parasitism rates on these plants were lower in noncrop habitats and higher in wheat fields and field margins, whereas beetles and parasitoids responded differently to landscape scale parameters. We found the hypothesized spillover from OSR crop onto wild plants in surrounding habitats only for parasitoids, but not for pollen beetles. Parasitism rates were not related to landscape simplification, but benefited from increasing proportions of OSR. In contrast, rape pollen beetles benefited from simple landscape structures, presumably due to multi-annual population build-ups resulting from long-term OSR planting (as part of the crop rotation). In conclusion, we showed that spillover from cropland affects parasitism rates on related wild plants outside cropland, which has not been shown so far, but can be expected to be a widespread effect shaping noncrop food webs.  相似文献   

16.
Andreas Kruess 《Ecography》2003,26(3):283-290
The effects of local habitat and large-scale landscape factors on species diversity and species interactions were studied using the insect community in stems of the creeping thistle Cirsium arvense . Thistle abundance was higher in fallows than in crop fields and field margins, with fallows providing 67% of thistle abundance within 15 study areas on a landscape scale. Species richness of the herbivores was positively related with thistle abundance, parasitoid species richness was influenced by habitat type and was positively correlated with herbivore species richness. The abundance of herbivores and parasitoids was affected by local factors such as habitat type and host abundance, but also by landscape factors such as the percentage of non-crop area and the isolation of habitats. The infestation rate caused by the agromyzid Melanagromyza aeneoventris was positively related to percent non-crop area, whereas the parasitism rate of this fly increased with increasing habitat diversity on the landscape scale. For these two interactions and for total herbivore abundance, a scale-dependency of the landscape effects was found. The results emphasize that biological diversity and ecological functions within a plant-insect community are not only affected by local habitat factors but also by large-scale landscape characteristics. Hence, to improve future agri-environmental schemes for biodiversity conservation and biological control large-scale landscape effects and their scale-dependency should be considered.  相似文献   

17.
Local species richness of butterflies can be expected to benefit from both local habitat properties as well as the availability of suitable habitats and source populations in the surrounding landscape. Whether local species richness is dependent on local or landscape factors can be assessed by examining the relationship between local and landscape species richness. Here we studied how local species richness is related to landscape‐level species richness in landscapes differing in agricultural intensity. The relationship was linear for field boundaries in intensively cultivated landscapes and non‐linear in less‐intensively cultivated landscapes. In landscapes containing semi‐natural grasslands (on average 4% of overall land‐use), the relationship was non‐linear for field boundaries, but linear when considering local species richness of the grasslands themselves. These results show that local factors are more important than landscape factors in determining local species richness in landscapes which contained semi‐natural grasslands. Local species richness was limited by landscape factors in intensively cultivated landscapes. This interpretation was supported by the relationship between local species richness and landscape‐scale average mobility and generalist percentage of butterfly assemblages. We conclude that the management of field boundary habitat quality for butterflies is expected to be most effective in landscapes with semi‐natural grasslands, the species composition of which in turn is dependent on the regional occurrence of grasslands. Based on our results, managing non‐crop habitats for the conservation of habitat specialists and species with poor mobility will be most efficient in regions where patches of semi‐natural grasslands occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号