首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
2.
The identification of noncoding functional elements within vertebrate genomes, such as those that regulate gene expression, is a major challenge. Comparisons of orthologous sequences from multiple species are effective at detecting highly conserved regions and can reveal potential regulatory sequences. The GDF6 gene controls developmental patterning of skeletal joints and is associated with numerous, distant cis-acting regulatory elements. Using sequence data from 14 vertebrate species, we performed novel multispecies comparative analyses to detect highly conserved sequences flanking GDF6. The complementary tools WebMCS and ExactPlus identified a series of multispecies conserved sequences (MCSs). Of particular interest are MCSs within noncoding regions previously shown to contain GDF6 regulatory elements. A previously reported conserved sequence at -64 kb was also detected by both WebMCS and ExactPlus. Analysis of LacZ-reporter transgenic mice revealed that a 440-bp segment from this region contains an enhancer for Gdf6 expression in developing proximal limb joints. Several other MCSs represent candidate GDF6 regulatory elements; many of these are not conserved in fish or frog, but are strongly conserved in mammals.  相似文献   

3.
Summary The amino acid sequences of the protonmotive cytochromeb from seven representative and phylogenetically diverse species have been compared to identify protein regions or segments that are conserved during evolution. The sequences analyzed included both prokaryotic and eukaryotic examples as well as mitochondrial cytochromeb and chloroplastb 6 proteins. The principal conclusion from these analyses is that there are five protein regions-each comprising about 20 amino acid residues—that are consistently conserved during evolution. These domains are evident despite the low density of invariant residues. The two most highly conserved regions, spanning approximately consensus residues 130–150 and 270–290, are located in extramembrane loops and are hypothesized to constitute part of the Qo reaction center. The intramembrane, hydrophobic protein regions containing the heme-ligating histidines are also conserved during evolution. It was found, however, that the conservation of the protein segments extramembrane to the histidine residues ligating the low potential b566 heme group showed a higher degree of sequence conservation. The location of these conserved regions suggests that these extramembrane segments are also involved in forming the Qo reaction center. A protein segment putatively constituting a portion of the Qi reaction center, located approximately in the region spanned by consensus residues 20–40, is conserved in species as divergent as mouse andRhodobacter. This region of the protein shows substantially less sequence conservation in the chloroplast cytochromeb 6. The catalytic role of these conserved regions is strongly supported by locations of residues that are altered in mutants resistant to inhibitors of cytochromeb electron transport.  相似文献   

4.
Molina WF  Galetti PM 《Genetica》2007,130(2):153-160
There are few examples of differentiated sex chromosomes in fishes. In the genus Leporinus, seven species present a highly differentiated ZW system, derived from heterochromatinization process. Cytogenetic analyses carried out in three of these fish species, Leporinus obtusidens, L. elongatus and L. reinhardti, through RBG-banding, showed late replication bands, coincident with heterochromatic regions in both Z and W chromosomes. A similar interstitial early replication segment was observed in the complex heterochromatic region along the Wq arms in the three species, which might correspond to a pseudoautosomal segment (SD, sex determining locus). Asynchrony related to the replication pattern among different Z chromosomes was not observed. When the identification of nuclear organizer regions by silver nitrate was performed over chromosomal preparations previously exposed to 5-bromo-2′-deoxyuridine (BrdU), remarkable positive signals at interstitial and telomeric position were observed on the q arms of W chromosomes in the species L. elongatus and L. reinhardti. The absence of 18S ribosomal RNA gene loci in this region, formerly demonstrated by FISH, indicates that this argentophilic behavior is putatively due to heterochromatin decondensation caused by BrdU incorporation, favoring such Ag+ reaction. Early and late replication bands were also observed in the heterochromatic portions of Z and W chromosomes, indicating that euchromatic and heterochromatic regions are interspersed. The present data suggest a significant level of heterochromatic complexity in the sex chromosomes of each species. On the other hand, the replication pattern shared by them supports a monophyletic origin.  相似文献   

5.
Six of 204 eukaryotic nuclear small-subunit ribosomal RNA sequences analyzed show a highly significant degree of clustering of short sequence motifs that indicates the fixation of products of replication slippage within them in their recent evolutionary history. A further 72 sequences show weaker indications of sequence repetition. Repetitive sequences in SSU rRNAs are preferentially located in variable regions and in particular in V4 and V7. The conserved region immediately 5 to V7 (C7) is also consistently repetitive. Whereas variable regions vary in length and appear to have evolved by the fixation of slippage products, C7 shows no indication of length variation. Repetition within C7 is therefore either not a consequence of slippage or reflects very ancient slippage events. The phylogenetic distribution of sequence simplicity in small-subunit rRNAs is patchy, being largely confined to the Mammalia, Apicomplexa, Tetrahymenidae, and Trypanosomatidae. The regions of the molecule associated with sequence simplicity vary with taxonomic grouping as do the sequence motifs undergoing slippage. Comparison of rates of insertion and substitution in a lineage within the genus Plasmodium confirms that both rates are higher in variable regions than in conserved regions. The insertion rate in variable regions is substantially lower than the substitution rate, suggesting that selection acts more strongly on slippage products than on point mutations in these regions. Patterns of coevolution between variable regions may reflect the consequences of selection acting on the incorporation of slippage-derived sequences across the gene.  相似文献   

6.
Due to a high evolutionary turnover many satellite DNAs are restricted to a group of closely related species. Here we demonstrate that the satellite DNA family PSUB, abundant in the beetle Palorus subdepressus, is distributed in a low number of copies among diverse taxa of Coleoptera (Insecta), some of them separated for an evolutionary period of up to 60 Myr. Comparison of PSUB cloned from the species Tribolium brevicornis with the PSUB family previously characterized in Palorus subdepressus revealed high sequence conservation and absence of fixed species-specific mutations. The most polymorphic sites are those with ancestral mutations shared among clones of both species. Since the ancestral mutations contribute significantly to overall diversity, it could be proposed that a similar mutational profile already existed in an ancestral species. The pattern of variability along the satellite monomer is characterized by the presence of conserved and variable regions. The nonrandom pattern of variability as well as the absence of sequence divergence is also discerned for PRAT satellite DNA, cloned previously from two Palorus species and a distantly related Pimelia elevata. Since PRAT and PSUB are present in parallel in diverse taxa of Coleoptera, we propose that their long evolutionary preservation suggests a possible functional significance. This indication is additionally supported not only by the high evolutionary conservation of the sequences, but also by the presence of significantly conserved and variable regions along the monomers. [Reviewing Editor: Dr. Jerzy Jurka]  相似文献   

7.
Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G-C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens.  相似文献   

8.
9.
Published bacterial 23S ribosomal RNA sequences were aligned, and universally conserved regions flanking highly variable regions were looked for. In strategically positioned conserved regions, six oligonucleotides suitable for polymerase chain reaction (PCR) and sequencing were designed, allowing fast sequencing of four of the most variable 23S rRNA regions. Two other primers were designed for PCR amplification of nearly complete 23S rRNA genes. All these primers successfully amplified fragments of 23S rRNA genes from seven unrelated bacteria. Four primers were used to determine 938 bp of sequence forCampylobacter jejuni subsp.jejuni. These results indicate that the oligonucleotide sequences presented here are useful for PCR amplification and sequence determination of variable 23S rRNA regions for a broad variety of eubacterial species.  相似文献   

10.
Summary 5S rDNA sequences present an intense dynamism and have proved to be valuable as genetic markers to distinguish closed related species and also in the understanding of the evolutionary dynamic of repetitive sequences in the genomes. In order to identify patterns of 5S rDNA organization and their evolution in the genome of fish species, such genomic segment was investigated in the tilapias Oreochromis niloticus and Tilapia rendalli, and in the hybrid O. urolepis hornorum × O. mossambicus. A dual 5S rDNA system was identified in the three analyzed tilapia samples. Although each 5S rDNA class was conserved among the three samples, a distinct 5S rDNA genome organization pattern could be evidenced for each sample. The presence of a dual 5S rDNA system seems to be a general trait among non-related teleost fish orders, suggesting that evolutionary events of duplication have occurred before the divergence of the main groups of teleost fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号