首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) isolates exhibit extensive sequence variation, particularly in the gp120 subunit of the envelope glycoprotein, and the degree of this variation has raised questions as to whether conserved regions of the HIV-1 envelope can be recognized by the host immune response. A CD8+ cytotoxic T-lymphocyte (CTL) clone specific for the HIV-1 envelope was derived by culturing peripheral blood mononuclear cells from an HIV-1 seropositive subject in the presence of a CD3-specific monoclonal antibody, interleukin-2, and irradiated allogeneic peripheral blood mononuclear cells. Lysis of target cells was restricted by an HLA-C molecule, Cw4, which has not been previously shown to present viral antigen to CTL. Mapping of the specificity of this CTL clone by using synthetic HIV-1 peptides localized the epitope to an 8-amino-acid region of gp120 (amino acids 376 to 383) which is conserved among approximately 90% of sequenced viral isolates. Examination of the recognition of variant peptides by this CTL clone demonstrated that a single, nonconservative amino acid substitution within the 8-amino-acid minimal epitope could abrogate lysis of targets incubated with the variant peptide. The identification of a CTL epitope in a highly conserved region of gp120 documents the ability of cellular immune responses of infected persons to respond to relatively invariant portions of this highly variable envelope glycoprotein. However, the ability of even a single-amino-acid change in gp120 to abolish lysis by CTL supports the hypothesis that sequence variation in HIV-1 may serve as a mechanism of immune escape. In addition, the identification of an HLA-C molecule presenting viral antigen to CTL supports a functional role for these molecules.  相似文献   

3.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

4.
We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.  相似文献   

5.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   

6.
Mader A  Kunert R 《PloS one》2012,7(6):e39063
The HIV-1 envelope protein harbors several conserved epitopes that are recognized by broadly neutralizing antibodies. One of these neutralizing sites, the MPER region of gp41, is targeted by one of the most potent and broadly neutralizing monoclonal antibody, 2F5. Different vaccination strategies and a lot of efforts have been undertaken to induce MPER neutralizing antibodies but little success has been achieved so far. We tried to consider the alternative anti-idiotypic vaccination approach for induction of 2F5-like antibodies. The previously developed and characterized anti-idiotypic antibody Ab2/3H6 was expressed as antibody fragment fusion protein with C-terminally attached immune-modulators and used for immunization of rabbits to induce antibodies specific for HIV-1. Only those rabbits immunized with immunogens fused with the immune-modulators developed HIV-1 specific antibodies. Anti-anti-idiotypic antibodies were affinity purified using a two-step affinity purification protocol which revealed that only little amount of the total rabbit IgG fraction contained HIV-1 specific antibodies. The characterization of the induced anti-anti-idiotypic antibodies showed specificity for the linear epitope of 2F5 GGGELDKWASL and the HIV-1 envelope protein gp140. Despite specificity for the linear epitope and the truncated HIV-1 envelope protein these antibodies were not able to exhibit virus neutralization activities. These results suggest that Ab2/3H6 alone might not be suitable as a vaccine.  相似文献   

7.
Six recombinant human Fab fragments that were derived from the same human immunodeficiency virus type 1 (HIV-1)-infected individual and are directed against the CD4 binding site (CD4bs) of the gp120 envelope glycoprotein were studied. A range of neutralizing activity against the HIV-1 (HXBc2) isolate was observed, with Fab b12 exhibiting the greatest potency among the Fabs tested. The neutralizing potency of Fab b12 was better than that of monoclonal whole antibodies directed against the third variable (V3) region of gp120. To explore the basis for the efficient neutralizing activity of b12, the recognition of a panel of HIV-1 gp120 mutants by the six Fabs was studied. The patterns of sensitivity to particular gp120 amino acid changes were similar for all six Fabs to those seen for anti-CD4bs monoclonal antibodies derived from HIV-1-infected individuals by conventional means. In addition, recognition by Fab b12 demonstrated an atypical sensitivity to changes in the V1 and V2 variable regions. Next, the binding of the Fabs to monomeric gp120 and to the envelope glycoprotein complex was examined. Neither the binding properties of the b12 Fab to monomeric gp120 nor the ability of the Fab to compete with soluble CD4 for monomeric gp120 binding appeared to account for the greater neutralizing potency. However, both quantitative and qualitative differences between the binding of b12 and that of less potent Fabs to the cell surface envelope glycoprotein complex were observed. Relative to less potently neutralizing Fabs, Fab b12 exhibited a higher affinity for a subpopulation of cell surface envelope glycoproteins, the conformation of which was best approximated by the mature gp120 glycoprotein. Apparently, subtle differences in the gp120 epitope recognized allow some members of the group of anti-CD4bs antibodies to bind to the functionally relevant envelope glycoprotein complex and to neutralize virus more efficiently.  相似文献   

8.
Changes were introduced into conserved amino acids within the ectodomain of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane envelope glycoprotein. The effect of these changes on the structure and function of the HIV-1 envelope glycoproteins was examined. The gp41 glycoprotein contains an amino-terminal fusion peptide (residues 512 to 527) and a disulfide loop near the middle of the extracellular domain (residues 598 to 604). Mutations affecting the hydrophobic sequences between these two regions resulted in two phenotypes. Some changes in amino acids 528 to 562 resulted in a loss of the noncovalent association between gp41 and the gp120 exterior glycoprotein. Amino acid changes in other parts of the gp41 glycoprotein (residues 608 and 628) also resulted in subunit dissociation. Some changes affecting amino acids 568 to 596 resulted in envelope glycoproteins partially or completely defective in mediating membrane fusion. Syncytium formation was more sensitive than virus entry to these changes. Changes in several amino acids from 647 to 675 resulted in higher-than-wild-type syncytium-forming ability. One of these amino acid changes affecting tryptophan 666 resulted in escape from neutralization by an anti-gp41 human monoclonal antibody, 2F5. These results contribute to an understanding of the functional regions of the HIV-1 gp41 ectodomain.  相似文献   

9.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

10.
Noninfectious human immunodeficiency virus type 1 (HIV-1) viruslike particles containing chimeric envelope glycoproteins were expressed in mammalian cells by using inducible promoters. We engineered four expression vectors in which a synthetic oligomer encoding gp120 residues 306 to 328 (amino acids YNKRKRIHIGP GRAFYTTKNIIG) from the V3 loop of the MN viral isolate was inserted at various positions within the endogenous HIV-1LAI env gene. Expression studies revealed that insertion of the heterologous V3(MN) loop segment at two different locations within the conserved region 2 (C2) of gp120, either 173 or 242 residues away from the N terminus of the mature subunit, resulted in the secretion of fully assembled HIV-like particles containing chimeric LAI/MN envelope glycoproteins. Both V3 loop epitopes were recognized by loop-specific neutralizing antibodies. However, insertion of the V3(MN) loop segment into other regions of gp120 led to the production of envelope-deficient viruslike particles. Immunization with HIV-like particles containing chimeric envelope proteins induced specific antibody responses against both the autologous and heterologous V3 loop epitopes, including cross-neutralizing antibodies against the HIV-1LAI and HIV-1MN isolates. This study, therefore, demonstrates the feasibility of genetically engineering optimized HIV-like particles capable of eliciting cross-neutralizing antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号