首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 141 毫秒
1.
 比较利用静态箱式法测定长白山原始阔叶红松林(Pinus koraiensis)和次生杨桦混交林的土壤呼吸作用表明,两者土壤呼吸作用的日动态均主要受温度影响,次生林土壤呼吸作用的日变化极值出现时间较原始林提前1~2 h;两者具有明显的季节动态,其中8月土壤呼吸速率最大;在生长季,土壤呼吸速率与土壤含水量关系不显著,而与土壤5 cm温度呈显著的指数关系;生长季(5~9月)次生林土壤释放CO2量(3 449.4 g·m-2)约为原始林(2 674.4 g·m-2)的1.3倍,这可能是由于次生林内具有比原始林较高的温度和较低的土壤含水量,更有利于根系生长代谢和土壤微生物的活动引起的。  相似文献   

2.
 基于2005年玉米(Zea mays)生长季土壤呼吸作用及其影响因子的动态观测资料,分析了玉米地土壤呼吸作用的日和季动态及其对土壤温度和生物因子协同作用的响应。结果表明 ,玉米地土壤呼吸作用的日变化为不对称的单峰型,其最小值和最大值分别出现在6∶00~7∶00和13∶00左右;玉米生长季中,土壤呼吸速率波动较大,其均值为3.16 μmolCO2·m-2·s-1,最大值为4.87μmolCO2·m-2·s-1,出现在7月28 日,最小值为1.32μmolCO2·m-2·s-1,出现在5月4日。在土壤呼吸作用日变化中,土壤呼吸速率(SR)与10 cm深度土壤温度(T)呈显著的线性关系:SR=αT+β。在整个生长季节中,玉米净初级生产力(NPP)与直线斜率(α)呈显著正相关,生物量(B)也明显影响直线的截距(β)。基于此,建立了玉米地土壤呼吸作用动态模型SR=(aNPP+b)T+cB2+dB+e。土壤呼吸作用季节变化的大部分(97%)可以由土壤温度、NPP和生物量的季节变化来解释。当仅考虑土壤温度对土壤呼吸作用的影响时,指数方程会过大或过小地估计了土壤呼吸强度。该文的结果强调了生物因子在土壤呼吸作用季节变化中的重要作用,同时指出土壤呼吸作用模型不仅要考虑土壤温度的影响,在生物因子影响土壤呼吸作用的温度敏感性时,还应该把生物因子纳入模型。  相似文献   

3.
华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应   总被引:15,自引:2,他引:13       下载免费PDF全文
 2007年11月至2008年11月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮沉降试验, 氮沉降水平分别为对照(CK, 0 g N·m–2·a–1)、低氮(5 g N·m–2·a–1)、中氮(15 g N·m–2·a–1)和高氮(30 g N·m–2·a–1)。每月下旬, 采用红外CO2分析法测定土壤呼吸速率, 并定量地对各处理施氮(NH4NO3)。结果表明: 2008年试验地氮湿沉降量为8.241 g·m–2, 超出该地区氮沉降临界负荷。在生长季节, 苦竹林根呼吸占总土壤呼吸的60%左右。模拟氮沉降促进了苦竹林土壤呼吸速率, 使苦竹林土壤每年向大气释放的CO2增加了9.4%~28.6%。在大时间尺度上(如1 a), 土壤呼吸主要受温度的影响。2008年6~10月, 土壤呼吸速率24 h平均值均表现为: 对照<低氮<中氮<高氮。氮沉降处理1 a后, 土壤微生物呼吸速率和土壤微生物生物量碳、氮增加, 并且均与氮沉降量具有相同趋势。各处理土壤呼吸速率与10 cm土壤温度、月平均气温呈极显著指数正相关关系, 利用温度单因素模型可以解释土壤呼吸速率的大部分。模拟氮沉降使得土壤呼吸Q10值增大, 表明氮沉降可能增强了土壤呼吸的温度敏感性。在氮沉降持续增加和全球气候变暖的背景下, 氮沉降和温度的共同作用可能使得苦竹林向大气中排放的CO2增加。  相似文献   

4.
武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性   总被引:9,自引:0,他引:9  
以武夷山国家级自然保护区为实验基地,研究了4种不同海拔高度上植物群落土壤呼吸速率的季节变化及其对温度的敏感性,以及与主要环境因子的关系.结果表明:4种不同海拔植物群落的土壤呼吸速率均具有明显且一致的季节变化,其中夏季土壤呼吸速率最大,为3.10~6.57 μmol CO2·m-2·s-1,冬季最小,为0.27~1.15 μmol CO2·m-2·s-1;土壤呼吸速率与土壤温度呈显著指数相关,不同样地土壤呼吸速率与土壤含水率和凋落物输入量的关系各不相同;高海拔地区土壤呼吸的Q10值显著高于低海拔地区.在中亚热带地区,不同海拔土壤呼吸速率的季节波动主要受土壤温度的影响;在未来全球气候变暖的背景下,高海拔地区的土壤可能释放更多的CO2.  相似文献   

5.
 采用涡度相关法对2005年生长季内蒙古锡林河流域羊草(Leymus chinensis)草原净生态系统交换(Net ecosystem exchange,NEE)进行了观测。观测结果表明:作为生长季降雨量仅有126 mm的干旱年,锡林河流域羊草草原生态系统受到强烈的干旱胁迫,其净生态系统碳交换的日动态表现为具有两个吸收高峰,净吸收峰值出现在8∶00和18∶00左右。最大的CO2吸收率为-0.38 mg CO2·m-2·s-1, 出现在6月底,与丰水年相比生态系统最大CO2吸收率下降了1倍。就整个生长季而言,不管是白天还是晚上2005年都表现为净CO2排放,整个生长季CO2净排放量为372.56 g CO2·m-2,是一个明显的CO2源。土壤含水量和土壤温度控制着生态系统CO2通量的大小,尤其是在白天,CO2通量和土壤含水量的变化呈现出显著的负相关关系,和土壤温度表现为正相关关系。  相似文献   

6.
上海典型城市草坪土壤呼吸特征   总被引:3,自引:0,他引:3  
采用CFX-2开放式呼吸测定系统测定了上海城区百慕大、黑麦草-百慕大混播、结缕草和狗牙根4种典型草坪的土壤呼吸速率。结果表明:4种草坪的土壤呼吸速率均呈明显季节变化,最大值出现在7—8月,最小值出现在12月—翌年1月;4种草坪土壤呼吸平均速率依次为百慕大草坪<黑麦草-百慕大混播草坪<结缕草草坪<狗牙根草坪,其中百慕大草坪的土壤呼吸速率变化范围为0.13~2.25 μmol·m-2·s-1,黑麦草-百慕大混播草坪为1.16~5.95 μmol·m-2·s-1,结缕草草坪为0.93~8.27 μmol·m-2·s-1,狗牙根草坪为1.21~9.27 μmol·m-2·s-1;4种草坪的土壤呼吸速率与气温、5 cm地温和10 cm地温均呈极显著指数相关;百慕大草坪和黑麦草-百慕大混播草坪的日变化均呈单峰曲线,与气温、5 cm地温和10 cm地温的日变化趋势一致;4种草坪土壤呼吸对温度的敏感性指数即Q10值为1.60~2.66;除结缕草外,其他草坪的土壤呼吸速率与土壤含水率相关性不显著;草坪的呼吸特征与其生长习性直接相关,而冷暖季混播草坪Q10值小,对提高城市生态景观和环境质量有积极作用。  相似文献   

7.
 亚热带杉木(Cunninghamia lanceolata)和马尾松(Pinus massoniana)在我国森林资源中占有十分重要的地位, 研究它们的土壤与表层凋落物的呼吸有助于了解它们的碳源汇时空分布格局及碳循环过程的关键驱动因子。采用Li-Cor 6400-09连接到Li-6400便携式CO2/H2O分析系统测定湖南两种针叶林群落(2007年1月至12月)的土壤呼吸及其相关根生物量和土壤水热因子。研究结果表明: 杉木和马尾松群落中土壤呼吸的季节变化显著, 在季节动态上的趋势相似, 都呈不规则曲线格局, 全年土壤呼吸速率平均值分别为186.9 mg CO2&#8226;m–2&#8226;h–1和242.4 mg CO2&#8226;m–2&#8226;h–1。从1月开始, 两种群落的土壤呼吸速率由最小值33.9 mg CO2&#8226;m–2&#8226;h–1和38.6 mg CO2&#8226;m–2&#8226;h–1随着气温的升高而升高, 杉木群落到7月底达到全年中最大值326.3 mg CO2&#8226;m–2&#8226;h–1, 而马尾松群落到8月中旬达到最大值467.3 mg CO2&#8226;m–2&#8226;h–1, 土壤呼吸的季节变化与土壤温度呈显著的指数相关, 土壤温度可以分别解释土壤呼吸变化的91.7%和78.0%, 和土壤含水量呈二次方程关系, 土壤含水量可以解释土壤呼吸变化的5.4%和8.4%。由土壤呼吸与土壤温度拟合的指数方程计算Q10值, 杉木和马尾松群落中全年土壤呼吸的Q10值分别为2.26和2.13, Q10值随着温度升高逐渐减小。两种群落土壤呼吸的差异主要受群落植被的根生物量、群落的凋落物量的影响。  相似文献   

8.
CO2浓度升高对红松和长白松土壤呼吸作用的影响   总被引:6,自引:0,他引:6  
以开顶箱法研究了CO2浓度升高对红松和长白松土壤呼吸作用的影响.结果表明,500 μmol CO2·mol-1使红松和长白松土壤呼吸速率明显降低,土壤表面CO2浓度升高导致CO2扩散受阻可能是土壤呼吸受到抑制的主要原因.500 μmol CO2·mol-1下两树种土壤表面CO2浓度明显高于对照箱和裸地条件下的CO2浓度,增加幅度在40~150 μmol·mol-1之间;对照箱内长白松土壤表面CO2浓度略高于裸地,差异不显著,红松差异显著500 μmol CO2·mol-1下的长白松土壤全氮及总有机碳含量略高于对照组,差异不显著,红松裸地的碳氮含量明显低于500 μmol CO2·mol-1 及对照箱内土壤碳氮含量;500 μmol CO2·mol-1 及开顶箱的微环境对地下3 cm处土壤温度没有明显影响.  相似文献   

9.
东北地区森林生态系统因其面积大,碳贮量高而在本地区和我国碳平衡中占有重要的地位。土壤表面CO2通量(RS)作为陆地生态系统向大气圈释放的主要CO2源,其时空变化直接影响到区域碳循环。该研究采用红外气体分析法比较测定我国东北东部次生林区6个典型的森林生态系统的RS及其相关的土壤水热因子,并深入分析土壤水热因子对RS的影响。研究结果表明:影响RS的主要环境因子是土壤温度、土壤含水量及其交互作用,但其影响程度因生态系统类型和土壤深度而异。包括这些环境因子的综合RS模型解释了 67.5%~90.6%的RS变异。在整个生长季中,不同生态系统类型的土壤温度差异不显著 ,而土壤湿度的差异显著(α= 0.05)。蒙古栎(Quercus mongolica)林、红松(Pinus koraiensis)林、 落叶松(Larix gmelinii)林、硬阔叶林、杂木林和杨桦(Populus davidiana_Betula platyphylla)林的RS变化范围依次为:1.89~5.23 µmol CO2•m-2•s-1,1.09~4.66µmol CO2•m-2•s-1,0.95~3.52µmol CO2•m-2•s-1,1. 13~5.97µmol CO2•m-2•s-1,1.05~6.58µmol CO2•m-2•s-1和1.11~5.76µmol CO2•m-2•s-1。RS的季节动态主要受土壤水热条件的驱动而呈现单峰曲线,其变化趋势大致与土壤温度的变化相吻合。Q10从小到大依次为:蒙古栎林2.32,落叶松林2 .57,红松 林2.76,硬阔叶林2.94,杨桦林3.54和杂木林3.55。Q10随土壤湿度的升高而增大;但超过 一定的阈值后,土壤湿度对Q10起抑制作用。该研究结果强调对该地区生态系统 土壤表面CO2通量的估测应同时考虑土壤水热条件的综合效应。  相似文献   

10.
四种温带森林土壤氧化亚氮通量及其影响因子   总被引:9,自引:0,他引:9  
以中国东北东部4种典型森林生态系统(人工红松林、落叶松林、天然次生蒙古栎林和硬阔叶林)为研究对象,采用静态暗箱-气相色谱法,比较其土壤N2O通量的季节动态及其影响因子.结果表明:在生长季, 4种森林生态系统土壤总体上表现为大气N2O的排放源, 其N2O通量大小顺序为:硬阔叶林(21.0±4.9 μg·m-2·h-1)> 红松林(17.6±4.6 μg·m-2·h-1)>落叶松林(9.8±5.9 μg·m-2·h-1)>蒙古栎林(1.6±12.6 μg·m-2·h-1).各生态系统的N2O通量没有明显的季节动态,只在夏初出现排放峰值(蒙古栎林为吸收峰).4种生态系统N2O通量均与10 cm深土壤含水量呈极显著正相关,与NO3--N呈显著负相关;N2O通量对土壤温度和NH4+-N的响应出现分异:针叶林N2O 通量与NH4+-N呈显著正相关,而与5 cm深土壤温度呈不相关;阔叶林与针叶林正相反.在较为干旱的2007年,土壤水分是影响4种林型土壤N2O通量的关键因子.植被类型与环境因子及氮素有效性对N2O通量的相互作用将是未来研究的重点.  相似文献   

11.
川中丘陵区水稻田土壤呼吸及其影响因素   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于川中丘陵区2003年4~9月水稻田土壤呼吸、土壤温度和水稻(Oryza sativa)生物量的测定,研究了水稻田土壤呼吸日变化和季节变化特征以及影响稻田土壤呼吸的主要因素。结果表明,水稻田土壤CO2排放通量的日变化为单峰型,其最小值和最大值分别出现在当地时间 7∶00和15∶00;在水稻生长期内,稻田土壤CO2排放通量在18.00~269.69 mg·m-2·h-1之间波动,平均排放通量为121.76 mg·m-2·h-1。在日的时间尺度上,水稻田土壤CO2排放通量与5 cm土壤温度存在显著的指数函数关系;而从整个生长期时间尺度上看,水稻田土壤CO2的排放通量主要受到5 cm土壤温度和水稻地下生物量的影响。在水稻生长初期,水稻地下生物量与稻田土壤CO2排放通量之间存在着显著的相关关系;水稻拔节中后期到成熟期,土壤温度则是制约稻田土壤CO2排放的关键因素。CO2排放通量与稻田地表水层深度的相关关系不显著。  相似文献   

12.
温带荒漠中温度和土壤水分对土壤呼吸的影响   总被引:9,自引:1,他引:8       下载免费PDF全文
 荒漠对气候变化具有高度敏感性, 深刻认识和量化非生物因子对荒漠生态系统土壤呼吸的影响具有重要意义。采用自动CO2通量系统(Li-8100)监测了梭梭(Haloxylon ammodendron)、假木贼(Anabasis aphylla)和盐穗木(Halostachys caspica)群落生长季土壤呼吸及温度、土壤含水量等, 深入分析了水热因子对土壤呼吸的影响。土壤呼吸具有不对称的日格局, 最小值出现在8:00, 最大值在12:00~14:00。土壤呼吸的季节格局与气温变化基本同步, 最小值在生长季末期(10月), 最大值在生长季中期(6~7月)。梭梭、假木贼和盐穗木群落生长季平均土壤呼吸速率分别为0.76、0.52和0.46 μmol CO2·m–2·s–1。气温对假木贼(51%)和盐穗木群落(65%)土壤呼吸季节变化的解释率高于梭梭(35%)。梭梭、假木贼和盐穗木群落土壤呼吸温度敏感性(Q10)逐渐增大, 基础呼吸速率(R10)逐渐减小。剔除温度影响后, 梭梭、假木贼群落土壤呼吸与土壤含水量呈显著的幂二次方函数关系, 盐穗木群落两者关系却明显减弱, 未达到显著水平。气温、土壤含水量的二元方程均能解释群落土壤呼吸大部分的时间变异: 梭梭群落71%~93%、假木贼群落79%~82%、盐穗木群落70%~80%。人工模拟降水后土壤呼吸速率表现出降水后10 min减小、180 min时明显增加、达到最大值后再次衰减的现象。5和2.5 mm降水处理下的土壤呼吸速率最大值和其后的递减值高于对照处理, 土壤呼吸增加、达到峰值和其后递减过程与5 cm土壤温度变化基本同步。  相似文献   

13.
改变凋落物输入对杉木人工林土壤呼吸的短期影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p﹥0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m–2·h–1, 比对照处理土壤呼吸速率(180.9 mg CO2·m–2·h–1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m–2·h–1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e 0.087 2t (R2=0.853, p﹤0.001), y=37.25e 0.088 8t (R2=0.896, p﹤0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p﹥0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。  相似文献   

14.
 为探讨西双版纳独特地方气候背景下,热带季节雨林CO2浓度的时空变化特征和不同时间尺度上环境因素对森林CO2浓度时间分布的作用,以及 为研究热带季节雨林的碳通量、净生态系统交换量(Net ecosystem exchange, NEE)等提供支持,我们利用热带季节雨林林冠上方和林内近地层 CO2浓度连续监测资料,结合同步气象资料进行了统计分析。研究结果表明:在植被生理活动、土壤呼吸以及林内湍流的共同作用下,西双版纳 热带季节雨林CO2浓度表现出明显的日变化、季节变化和林冠上下差异。在日尺度上,林冠上方的CO2浓度时间变化曲线为“单峰型”,林内近 地层CO2浓度时间变化曲线为“双峰型”,造成林内近地层傍晚第二个峰值的主要因子是地形因子作用下形成的局地环流。在季节尺度上,林冠 上方CO2浓度主要受林冠代谢作用的影响,呈现雨季低、干季高的特点,而林内近地层的CO2浓度则主要受地表呼吸过程所控制,季节变化趋势 与林冠上方相反。林冠上方CO2浓度低于林内近地层CO2浓度,且差异较大;在日尺度上,各月(除12月外)CO2浓度的最大差值皆大于80 mg·m -3,且出现在傍晚;在季节尺度上,最大值为-62.9 mg·m-3,出现在10月,最小值为-8.4 mg·m-3,出现在12月。  相似文献   

15.
 由于受到多种生物和非生物因素的影响,土壤呼吸在不同时间尺度上的动态变化可能不一致。对不同时间尺度的土壤呼吸动态变化的研究有助 于深入了解土壤呼吸变化的机理,也有利于精确推算土壤碳的排放。采用红外CO2分析法测定哀牢山中山湿性常绿阔叶林季节间(2004年4月~ 2005年3月)和昼夜间 (2004年7、9和11月及2005年1、3和5月共6次)的土壤呼吸。哀牢山中山湿性常绿阔叶林中土壤呼吸的季节变化显著,其中 湿季(5~10月)的土壤呼吸高于干季(11月~翌年4月),全年土壤呼吸的平均值为0.442 g CO2&;#8226;m-2&;#8226;h-1。6 次测定的土壤呼吸日变化模式并不 相同,7和9月、翌年1和3月夜间土壤呼吸大于昼间土壤呼吸,11月和翌年5月则相反;5、7和9月昼夜间的土壤呼吸最大值与最小值的差异比11 月、翌年1和3月的测定结果大。季节间土壤呼吸与土壤温度(p=0.000)和土壤含水量(p=0. 007) 均有显著的指数相关,土壤温度可以解释土壤 呼吸变化的56.1%,土壤含水量可以解释土壤呼吸变化的11.1%。不同季节测定的土壤呼吸日变化与土壤温度、气温和土壤含水量则没有显著 的指数相关。由土壤呼吸与土壤温度拟合的指数方程计算Q10值,在温度为 5.9~16.6 ℃内,全年土壤呼吸的Q10值为4.53,在温度为5.9~ 11.0 ℃内,干季土壤呼吸的Q10值为7.17,在温度为10.3~16.6 ℃内,湿季土壤呼吸的Q10值为2.34。在不同时间尺度上,生物和非生物因素 对哀牢山中山湿性常绿阔叶林的土壤呼吸表现出不同的影响。土壤呼吸的季节变化主要受非生物因子温度和水分变化的调控,而土壤呼吸的昼 夜变化则可能主要受植物的生理活动周期性等生物因素的影响。通过温度的指数函数关系,用土壤呼吸的瞬时值来推算土壤呼吸的日通量和年 通量时,需要考虑温度和水分外的其它生物因子的影响。  相似文献   

16.
 对川西亚高山原始岷江冷杉(Abies faxoniana)林林窗内和林冠下小气候及岷江冷杉幼苗生长和生物量进行了 两个生长季的连续观测。结果表明:6月林窗内与林冠下太阳辐射的日积累量没有显著性差异,而7~8月的日积 累量则有显著性差异。整个生长季节,林窗内太阳辐射的平均积累量为8.10×MJ•m-2,而林冠下太阳辐射的平 均积累量为5.02×MJ•m-2,两个位点太阳辐射积累量的显著差异主要来自7~8月日积累量的不同;林窗内5和15 cm层土壤的日平均温度比林冠下相应深度分别高2.1和2.7℃,差异显著。林窗内和林冠下3~8年岷江冷杉幼苗高 增长率分别为1.2±0.3 cm•a-1和1.1±0.3 cm•a-1,差异不显著;9~20年岷江冷杉幼苗高增长率分别为6.2± 2.4 cm•a-1和3.0±0.9 cm•a-1,差异显著。林窗内岷江冷杉幼苗根、主茎和总生物量与林冠下幼苗根、主茎 和总生物量没有显著差异。不同年龄的岷江冷杉幼苗叶和侧枝生物量积累对林窗微环境的响应不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号