首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
K H Choi  C J Chen  M Kriegler  I B Roninson 《Cell》1988,53(4):519-529
Multidrug resistance in human cells results from increased expression of the mdr1 (P-glycoprotein) gene. Although the same gene is activated in cells selected with different drugs, multidrug-resistant cell lines can be preferentially resistant to their selecting agent. The mdr1 cDNA sequence from vinblastine-selected KB cells, which are uniformly resistant to different lipophilic drugs, was compared with the corresponding sequence from colchicine-selected KB cells preferentially resistant to colchicine. These sequences differ at three positions, resulting in a single amino acid change in P-glycoprotein. These differences result from mutations that occurred during colchicine selection. The appearance of these mutations coincides with the emergence of preferential resistance to colchicine. We have constructed biologically active mdr1 cDNA clones that express either wild-type or mutant P-glycoprotein. Multi-drug-resistant transfectants obtained with the mutant sequence were characterized by increased relative resistance to colchicine compared with transfectants obtained with wild-type sequence. mdr1 mutations are therefore responsible for preferential resistance to colchicine in multidrug-resistant KB cells.  相似文献   

2.
The human MDR1 gene encodes the multidrug transporter (P-glycoprotein), a multidrug efflux pump. The highly homologous MDR2 gene product does not appear to be a functional multidrug pump. We have constructed a chimeric protein in which the first intracytoplasmic loop and the third and fourth transmembrane domains of the MDR1 protein were replaced by the analogous region of MDR2. Substitution of the MDR2 sequences encompassing amino acid residues 140 to 229 resulted in 17 amino acid changes, 10 in the intracytoplasmic loop (amino acids 141-188) and 7 in the transmembrane regions. This chimeric protein was expressed on the surface of NIH 3T3 cells where it bound [3H]azidopine but did not confer drug resistance. When only 4 residues, 165, 166, 168, and 169, were changed back to MDR1 amino acids, a functional drug transporter was recovered. When residues 165, 166, 168, and 169 from MDR2 were substituted into a functional MDR1 cDNA, the resulting construction was not able to confer drug resistance. These results indicate that the major functional differences between MDR1 and MDR2 in this region of P-glycoprotein reside in a small segment of the first intracytoplasmic loop. We also independently analyzed the effect of replacing Asn183 of MDR1 with Ser which occurs in MDR2. Substitution of Ser at position 183 in combination with Val at position 185 in P-glycoprotein resulted in a relative increase in resistance to actinomycin D, vinblastine, and doxorubicin in transfected NIH 3T3 cells. These results emphasize the importance of the first intracytoplasmic loop in P-glycoprotein in determining function and relative drug specificity of the transporter.  相似文献   

3.
We expressed human MDR1 cDNA isolated from the human adrenal gland in porcine LLC-PK1 cells. A highly polarized epithelium formed by LLC-GA5-COL300 cells that expressed human P-glycoprotein specifically on the apical surface showed a multidrug-resistant phenotype and had 8.3-, 3.4-, and 6.5-fold higher net basal to apical transport of 3H-labeled cortisol, aldosterone, and dexamethasone, respectively, compared with host cells. But progesterone was not transported, although it inhibited azidopine photoaffinity labeling of human P-glycoprotein and increased the sensitivity of multidrug-resistant cells to vinblastine. An excess of progesterone inhibited the transepithelial transport of cortisol by P-glycoprotein. These results suggest that cortisol and aldosterone are physiological substrates for P-glycoprotein in the human adrenal cortex and that substances that efficiently bind to P-glycoprotein are not necessarily transported by P-glycoprotein.  相似文献   

4.
The human MDR (P-glycoprotein) gene family is known to include two members, MDR1 and MDR2. The product of the MDR1 gene, which is responsible for resistance to different cytotoxic drugs (multidrug resistance), appears to serve as an energy-dependent efflux pump for various lipophilic compounds. The function of the MDR2 gene remains unknown. We have examined the structure of the human MDR gene family by Southern hybridization of DNA from different multidrug-resistant cell lines with subfragments of MDR1 cDNA and by cloning and sequencing of genomic fragments. We have found no evidence for any other cross-hybridizing MDR genes. The sequence of two exons of the MDR2 gene was determined from genomic clones. Hybridization with single-exon probes showed that the human MDR1 gene is closely related to two genes in mouse and hamster DNA, whereas MDR2 corresponds to one rodent gene. The human MDR locus was mapped by field-inversion gel electrophoresis, and both MDR genes were found to be linked within 330 kilobases. The expression patterns of the human MDR genes were examined by enzymatic amplification of cDNA. In multidrug-resistant cell lines, increased expression of MDR1 mRNA was paralleled by a smaller increase in the levels of MDR2 mRNA. In normal human tissues, MDR2 was coexpressed with MDR1 in the liver, kidney, adrenal gland, and spleen. MDR1 expression was also detected in colon, lung, stomach, esophagus, muscle, breast, and bladder.  相似文献   

5.
The human colon carcinoma cell line HT29-D4, which constitutively expresses a very low level of the MDR1 gene product, was made multidrug resistant by transfection with a human MDR1 cDNA from the pHaMDR1/A expression vector and selection by colchicine. Resistant clones were 3- to 15-fold resistant to colchicine and were cross-resistant to doxorubicin (3- to 4-fold). MDR1 gene expression was associated with the expression of functional P-glycoprotein (gp-170); the function was reversed by verapamil and cyclosporin A. HT29-D4 cells are able to differentiate in vitro by replacement of glucose by galactose in the culture medium and also to release the carcinoembryonic antigen (CEA). Under these culture conditions, MDR1 mRNA and gp-170 were always expressed and the protein remained functional. Upon galactose treatment, resistant clones were less differentiated since they showed a heterogeneous monolayer organization accompanied by heterogeneous staining of cell-surface CEA and a high decrease (60-90%) of CEA release.  相似文献   

6.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

7.
8.
Omote H  Figler RA  Polar MK  Al-Shawi MK 《Biochemistry》2004,43(13):3917-3928
A glycine 185 to valine mutation of human P-glycoprotein (ABCB1, MDR1) has been previously isolated from high colchicine resistance cell lines. We have employed purified and reconstituted P-glycoproteins expressed in Saccharomyces cerevisiae [Figler et al. (2000) Arch. Biochem. Biophys. 376, 34-46] and devised a set of thermodynamic analyses to reveal the mechanism of improved resistance. Purified G185V enzyme shows altered basal ATPase activity but a strong stimulation of colchicine- and etoposide-dependent activities, suggesting a tight regulation of ATPase activity by these drugs. The mutant enzyme has a higher apparent K(m) for colchicine and a lower K(m) for etoposide than that of wild type. Kinetic constants for other transported drugs were not significantly modified by this mutation. Systematic thermodynamic analyses indicate that the G185V enzyme has modified thermodynamic properties of colchicine- and etoposide-dependent activities. To improve the rate of colchicine or etoposide transport, the G185V enzyme has lowered the Arrhenius activation energy of the transport rate-limiting step. The high transition state energies of wild-type P-glycoprotein, when transporting etoposide or colchicine, increase the probability of nonproductive degradation of the transition state without transport. G185V P-glycoprotein transports etoposide or colchicine in an energetically more efficient way with decreased enthalpic and entropic components of the activation energy. Our new data fully reconcile the apparently conflicting results of previous studies. EPR analysis of the spin-labeled G185C enzyme in a cysteine-less background and kinetic parameters of the G185C enzyme indicate that position 185 is surrounded by other residues and is volume sensitive. These results and atomic detail structural modeling suggest that residue 185 is a pivotal point in transmitting conformational changes between the catalytic sites and the colchicine drug binding domain. Replacement of this residue with a bulky valine alters this communication and results in more efficient transport of etoposide or colchicine.  相似文献   

9.
《FEBS letters》1993,330(3):279-282
Human MDR1 cDNA was introduced into the human cultured cells KB-3-1 and Schizosaccharomyces pombe pmdI null mutant KN3. The drug sensitivity of KB-G2 and KN3/pgp, expressing human P-glycoprotein, was examined. KB-G2 was resistant to the peptide antibiotics valinomycin and gramicidin D as well as having a typical multidrug resistance (MDR) phenotype. KN3/pgp was resistant to valinomycin and actinomycin D, but not to adriamycin. The ATP-hydrolysis-deficient mutant did not confer KN3 resistance to these antibiotics. Human P-glycoprotein expressed in S. pombe seemed to lack N-glycosylation. The N-glycosylation-deficient mutant, however, conferred a typical MDR phenotype on KB-3-1. These results suggest that human P-glycoprotein functions as an efflux pump of valinomycin and actinomycin D in the membrane of S. pombe.  相似文献   

10.
The P-glycoprotein of themdr 1 gene is responsible for the phenomenon of multidrug resistance in human cells. The presumed drug-binding site of the wild-type P-glycoprotein contains a glycine at position 185. A mutant P-glycoprotein which contains valine at this position causes cells to retain resistance to colchichine, but to lose cross-resistance to other drugs such as the chemotherapeutic agents vinblastine and Adriamycin. This has been hypothesized to be due to a conformational change in the protein induced by the amino acid substitution. Using conformational energy analysis, we have determined the allowed three-dimensional structures for the wild-type and mutant proteins in the region of position 185. The results indicate that the wild-type protein adopts a unique left-handed conformation at position 185 which is energetically unfavorable for the protein withl-amino acids (including valine) at this position. This conformational change induced by amino acid substitutions for Gly 185 could explain the differences in binding to the P-glycoprotein of various drugs and, hence, the differences in drug resistance exhibited by various cell lines expressing these proteins.  相似文献   

11.
The P-glycoprotein of themdr 1 gene is responsible for the phenomenon of multidrug resistance in human cells. The presumed drug-binding site of the wild-type P-glycoprotein contains a glycine at position 185. A mutant P-glycoprotein which contains valine at this position causes cells to retain resistance to colchichine, but to lose cross-resistance to other drugs such as the chemotherapeutic agents vinblastine and Adriamycin. This has been hypothesized to be due to a conformational change in the protein induced by the amino acid substitution. Using conformational energy analysis, we have determined the allowed three-dimensional structures for the wild-type and mutant proteins in the region of position 185. The results indicate that the wild-type protein adopts a unique left-handed conformation at position 185 which is energetically unfavorable for the protein withl-amino acids (including valine) at this position. This conformational change induced by amino acid substitutions for Gly 185 could explain the differences in binding to the P-glycoprotein of various drugs and, hence, the differences in drug resistance exhibited by various cell lines expressing these proteins.  相似文献   

12.
Three high-level multidrug-resistant sublines of the human T-lymphoblastoid cell line CCRF-CEM were selected independently with either actinomycin D, vincristine or adriamycin. They exhibited distinct quantitative differences of cross-resistance profiles, and showed amplification and marked expression of the mdrl/P-glycoprotein gene. DNA and RNA were prepared from the cell lines, and additionally from three cell samples of patients suffering from acute lymphatic leukemia. Applying the polymerase chain reaction (PCR) for amplification, we cloned and sequenced from these sources segments of the mdrl/P-glycoprotein gene around the codon 185 which codes for an amino acid residue possibly influencing the drug binding function of the P-glycoprotein. Altogether, only 2 single nucleotide differences in an intron were found in 2 out of 40 recombinants each harboring a 209 bp genomic or a 269 bp cDNA fragment of the mdrl/P-glycoprotein gene. Our result does not support the idea of clustered point mutations in this segment of the P-glycoprotein gene as a cause of different multidrug resistance profiles. We additionally examined another segment of the P-glycoprotein gene in its second half, essentially delivering the same negative result, though.  相似文献   

13.
Sequence of mdr3 cDNA encoding a human P-glycoprotein   总被引:17,自引:0,他引:17  
We have determined the sequence of the human mdr3 gene using cDNA derived from liver RNA. The mdr3 gene codes for a member of a family of membrane proteins, the P-glycoproteins, overproduced in many multi-drug-resistant (MDR) cell lines. Like its relatives, the protein encoded by mdr3 has a deduced Mr of 140,000, which is presumably increased by glycosylation after synthesis. The sequence consists of two similar halves, each with a series of six hydrophobic segments that may form a membrane channel. The halves also possess nucleotide-binding consensus sequences, which presumably act as ATPases and drive drug transport. The presumed ATPase domains are all but identical to those of the human mdr1 gene product [Chen et al., Cell 47 (1986) 381-389]. We attribute this high level of sequence conservation to the repeated gene conversion that is evident from segments in which mdr1 and mdr3 differ only in a few silent mutations. Divergence between P-glycoprotein family members is greatest at the N terminus and in the 60 amino acid linker connecting the two halves. In the putative trans-membrane domains approx. 80% of the amino acids are conserved between the products of mdr1 and mdr3. Although the function of mdr3 is not yet known, its high homology with mdr1 suggests that it also encodes an efflux pump with broad specificity.  相似文献   

14.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).  相似文献   

15.
16.
We determinedthe role of the multidrug resistance (MDR1) gene product,P-glycoprotein (PGP), in the secretion of aldosterone by the adrenalcell line NCI-H295. Aldosterone secretion is significantly decreased bythe PGP inhibitors verapamil, cyclosporin A (CSA), PSC-833, andvinblastine. Aldosterone inhibits the efflux of the PGP substraterhodamine 123 from NCI-H295 cells and from human mesangial cells(expressing PGP). CSA, verapamil, and the monoclonal antibody UIC2significantly decreased the efflux of fluorescein-labeled (FL)-aldosterone microinjected into NCI-H295 cells. In MCF-7/VP cells,expressing multidrug resistance-associated protein (MRP) but not PGP,and in the parental cell line MCF7 (expressing no MRP andno PGP), the efflux of microinjected FL-aldosterone was slow. In BC19/3cells (MCF7 cells transfected with MDR1), the efflux of FL-aldosteronewas rapid and it was inhibited by verapamil, indicating thattransfection with MDR1 cDNA confers the ability to transportFL-aldosterone. These results strongly indicate that PGP plays a rolein the secretion of aldosterone by NCI-H295 cells and in other cellsexpressing MDR1, including normal adrenal cells.

  相似文献   

17.
Human P-glycoprotein (Pgp) is a 170-kDa plasma membrane protein that confers multidrug resistance to otherwise sensitive cells. A mutation in Pgp, G185-->V, originally identified as a spontaneous mutation, was shown previously to alter the drug resistance profiles in cell lines that are stably transfected with the mutant MDR1 cDNA and selected with cytotoxic agents. To understand the mechanism by which the V185 mutation leads to an altered drug resistance profile, we used a transient expression system that eliminates the need for drug selection to attain high expression levels and allows for the rapid characterization of many aspects of Pgp function and biosynthesis. The mutant and wild-type proteins were expressed at similar levels after 24-48 h in human osteosarcoma (HOS) cells by infection with a recombinant vaccinia virus encoding T7 RNA polymerase and simultaneous transfection with a plasmid containing MDR1 cDNA controlled by the T7 promoter. For both mutant and wild-type proteins, photolabeling with [3H]azidopine and [125I]iodoarylazidoprazosin, drug-stimulated ATPase activity, efflux of rhodamine 123, and accumulation of radiolabeled vinblastine and colchicine were evaluated. In crude membrane preparations from HOS cells, a higher level of basal Pgp-ATPase activity was observed for the V185 variant than for the wild-type, suggesting partial uncoupling of drug-dependent ATP hydrolysis by the mutant. Several compounds, including verapamil, nicardipine, tetraphenylphosphonium, and prazosin, stimulated ATPase activities of both the wild-type and mutant similarly, whereas cyclosporin A inhibited the ATPase activity of the mutant more efficiently than that of the wild-type. This latter observation explains the enhanced potency of cyclosporin A as an inhibitor of the mutant Pgp. No differences were seen in verapamil-inhibited rhodamine 123 efflux, but the rate of accumulation was slower for colchicine and faster for vinblastine in cells expressing the mutant protein, as compared with those expressing wild-type Pgp. We conclude that the G185-->V mutation confers pleiotropic alterations on Pgp, including an altered basal ATPase activity and altered interaction with substrates and the inhibitor cyclosporin A.  相似文献   

18.
19.
An antipeptide antibody (P7) to P-glycoprotein has been produced by immunizing rabbits with a synthetic peptide. Antibody P7 is directed against the amino-terminal region of P170 (residues 28-35). The antibody immunoprecipitates a 170-kDa P-glycoprotein from extracts of drug-resistant KB-V1 cells that is not present in the drug-sensitive cell line KB-3-1. Antibody P7 was used to quantitate the amount of P-glycoprotein present in drug-resistant KB lines at various levels of resistance and to demonstrate the presence of P-glycoprotein in NIH 3T3 cells transfected with a cloned MDR1 cDNA or human genomic DNA encoding MDR1. Pulse-chase labeling experiments demonstrated that P-glycoprotein is synthesized as a 140-kDa precursor which is slowly converted over 2-4 h to a 170-kDa glycoprotein. Tunicamycin treatment blocks the conversion of the precursor to the mature form, and removal of N-linked oligosaccharides with Endo F reduces the relative molecular weight of P-glycoprotein to 140K. The mobility of mature P-glycoprotein is unaffected by treatment with neuraminidase and Endo H. These data indicate that P-glycoprotein is N-glycosylated and contains little or no neuraminic acid. P-Glycoprotein is also phosphorylated, and the extent of phosphate incorporated is proportional to the amount of protein present in drug-resistant cells.  相似文献   

20.
Overexpression of the Multiple Drug Resistance gene (MDR1) has been proposed as a major mechanism related to both intrinsic and acquired resistance to chemotherapeutic agents. The gene product is a membrane protein (P-glycoprotein), that acts as an energydependent drug efflux pump decreasing drug accumulation in resistant tumor cells. We have characterized MDR1 and P-Glycoprotein expression in human gastric adenocarcinoma and in precursor lesions. MDR1 mRNAs, analyzed by dot-blot technique, were detected in 9 of 10 non-tumoral gastric mucosae and in 8 of 10 gastric adenocarcinomas. Immunohistochemical analysis, using the MRK16 monoclonal antibody, revealed heterogeneous expression of P-Glycoprotein in individual cells. The P-Glycoprotein was found on the surface of cells of gastric areas with intestinal metaplasia subtype III. This type of intestinal metaplasia, also called “colonic metaplasia”, has been strongly associated with a high risk for the development of gastric cancer. The fact that the P-Glycoprotein was detected in this precursor lesion is consistent with the intestinal metaplasia dysplasia and carcinoma sequence proposed in the histogenesis of this tumor. The finding that P-Glycoprotein was heterogeneously expressed in malignant cells of some gastric adenocarcinomas also suggests that this transporter system probably contributes to primary and secondary multidrug resistance in this neoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号