首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The deposition of anthropogenically fixed nitrogen (N) from the atmosphere onto land and plant surfaces has strong influences on terrestrial ecosystem processes. Although recent research has expanded our understanding of how N deposition affects ecosystems directly, less attention has been directed toward the investigation of how N deposition may affect ecosystems indirectly by modifying interactions among organisms. Empirical evidence suggests that there are several mechanisms by which N deposition may affect interactions between plants and insect herbivores. The most likely mechanisms are deposition-induced shifts in the quality and availability of host plant tissues. We discuss the effects of N deposition on host plant chemistry, production, and phenology, and we review the evidence for the effects of N deposition on insect herbivores at the individual, population, and community levels. In general, N deposition has positive effects on individual insect performance, probably due to deposition-induced improvements in host plant chemistry. These improvements include increased N and decreased carbon-based defensive compound concentrations. The evidence to date suggests that N deposition may also have a positive effect on insect populations. These effects may have considerable ecological, as well as economic consequences if the rates of herbivory on economically important timber species continue to increase. Deposition-induced changes in plant–herbivore relationships may affect community and ecosystem processes. However, we predict that the larger-scale consequences of interactions between N deposition and herbivory will vary based on site-specific factors. In addition, interactions between N deposition and other global-scale changes may lead to nonadditive effects on patterns of herbivory.  相似文献   

2.
Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5–24 kg N ha?1 yr?1) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha?1 year?1, herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs (Calluna vulgaris) than by grasses (Molinia caerulea). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling.  相似文献   

3.
High levels of atmospheric nitrogen (N) deposition in Europe and North America were maintained throughout the 1990s, and global N deposition is expected to increase by a factor of 2.5 over the next century. Available soil N limits primary production in many terrestrial ecosystems, and some computer simulation models have predicted that increasing atmospheric N deposition may result in greater terrestrial carbon (C) storage in woody biomass. However, empirical evidence demonstrating widespread increases in woody biomass C storage due to atmospheric N deposition is uncommon. Increased C storage in soil organic matter due to chronic N inputs has rarely been reported and is often not considered in computer simulation models of N deposition effects. Since 1994, we have experimentally simulated chronic N deposition by adding 3 g N m−2 yr−1 to four different northern hardwood forests, which span a 500 km geographic gradient in Michigan. Each year we measured tree growth. In 2004, we also examined soil C content to a depth of 70 cm. When we compared the control treatment with the NO3 deposition treatment after a decade of experimentation, ecosystem C storage had significantly increased in both woody biomass (500 g C m−2) and surface soil (0–10 cm) organic matter (690 g C m−2). The increase in surface soil C storage was apparently driven by altered rates of organic matter decomposition, rather than an increase in detrital inputs to soil. Our results, for study locations stretching across hundreds of kilometers, support the hypothesis that chronic N deposition may increase C storage in northern forests, potentially contributing to a sink for anthropogenic CO2 in the northern Hemisphere.  相似文献   

4.
In a recent study, Magnani et al. report how atmospheric nitrogen deposition drives stand-lifetime net ecosystem productivity (NEPav) for midlatitude forests, with an extremely high C to N response (725 kg C kg−1 wet-deposited N for their European sites). We present here a re-analysis of these data, which suggests a much smaller C : N response for total N inputs. Accounting for dry, as well as wet N deposition reduces the C : N response to 177 : 1. However, if covariance with intersite climatological differences is accounted for, the actual C : N response in this dataset may be <70 : 1. We then use a model analysis of 22 European forest stands to simulate the findings of Magnani et al. Multisite regression of simulated NEPav vs. total N deposition reproduces a high C : N response (149 : 1). However, once the effects of intersite climatological differences are accounted for, the value is again found to be much smaller, pointing to a real C : N response of about 50–75 : 1.  相似文献   

5.
Integration of the priming effect (PE) in ecosystem models is crucial to better predict the consequences of global change on ecosystem carbon (C) dynamics and its feedbacks on climate. Over the last decade, many attempts have been made to model PE in soil. However, PE has not yet been incorporated into any ecosystem models. Here, we build plant/soil models to explore how PE and microbial diversity influence soil/plant interactions and ecosystem C and nitrogen (N) dynamics in response to global change (elevated CO2 and atmospheric N depositions). Our results show that plant persistence, soil organic matter (SOM) accumulation, and low N leaching in undisturbed ecosystems relies on a fine adjustment of microbial N mineralization to plant N uptake. This adjustment can be modeled in the SYMPHONY model by considering the destruction of SOM through PE, and the interactions between two microbial functional groups: SOM decomposers and SOM builders. After estimation of parameters, SYMPHONY provided realistic predictions on forage production, soil C storage and N leaching for a permanent grassland. Consistent with recent observations, SYMPHONY predicted a CO2‐induced modification of soil microbial communities leading to an intensification of SOM mineralization and a decrease in the soil C stock. SYMPHONY also indicated that atmospheric N deposition may promote SOM accumulation via changes in the structure and metabolic activities of microbial communities. Collectively, these results suggest that the PE and functional role of microbial diversity may be incorporated in ecosystem models with a few additional parameters, improving accuracy of predictions.  相似文献   

6.
Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed in situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5‐fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (?Cν dep), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. ?Cν dep for 1997–2013 was estimated to be 0.27 ± 0.13 Pg C year?1 from N and 0.054 ± 0.10 Pg C year?1 from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of ?Cν dep was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. ?CP dep was exceeded by ?CN dep over 1960–2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.  相似文献   

7.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

8.
The cover and abundance of Juniperus virginiana L. in the U.S. Central Plains are rapidly increasing, largely as a result of changing land-use practices that alter fire regimes in native grassland communities. Little is known about how conversion of native grasslands to Juniperus-dominated forests alters soil nutrient availability and ecosystem storage of carbon (C) and nitrogen (N), although such land-cover changes have important implications for local ecosystem dynamics, as well as regional C and N budgets. Four replicate native grasslands and adjacent areas of recent J. virginiana encroachment were selected to assess potential changes in soil N availability, leaf-level photosynthesis, and major ecosystem C and N pools. Net N mineralization rates were assessed in situ over two years, and changes in labile soil organic pools (potential C and N mineralization rates and microbial biomass C and N) were determined. Photosynthetic nitrogen use efficiencies (PNUE) were used to examine differences in instantaneous leaf-level N use in C uptake. Comparisons of ecosystem C and N stocks revealed significant C and N accrual in both plant biomass and soils in these newly established forests, without changes in labile soil N pools. There were few differences in monthly in situ net N mineralization rates, although cumulative annual net N mineralization was greater in forest soils compared to grasslands. Conversely, potential C mineralization was significantly reduced in forest soils. Encroachment by J. virginiana into grasslands results in rapid accretion of ecosystem C and N in plant and soil pools with little apparent change in N availability. Widespread increases in the cover of woody plants, like J. virginiana, in areas formerly dominated by graminoid species suggest an increasing role of expanding woodlands and forests as regional C sinks in the central U.S.  相似文献   

9.
Abstract 1. Anthropogenic increases in nitrogen deposition are impacting terrestrial ecosystems worldwide. While some of the direct ecosystem‐level effects of nitrogen deposition are understood, the effects of nitrogen deposition on plant–insect interactions and on herbivore population dynamics have received less attention. 2. Nitrogen deposition will potentially influence both plant resource availability and herbivore population growth. If increases in herbivore population growth outstrip increases in resource availability, then increases in the strength of density dependence expressed within the herbivore population would be predicted. Alternatively, if plant resources respond more vigorously to nitrogen deposition than do herbivore populations, a decline in the strength of density dependence would be expected. No change in the strength of density dependence acting upon the herbivore population would suggest equivalent responses by herbivores and plants. 3. A density manipulation experiment was performed to examine the effect of nitrogen deposition on the interaction between a host plant, Asclepias tuberosa, and its herbivore, Aphis nerii. Aphid maximum per capita growth rate (Rmax), carrying capacity (K), and the strength of density dependence were measured under three nitrogen deposition treatments. The effect of nitrogen deposition on the relationship among these three measures of insect population dynamics was explored. 4. Simulated nitrogen deposition increased aphid per capita population growth, plant foliar nitrogen concentrations, and plant biomass. Nitrogen deposition caused Rmax and K to increase proportionally, leading to no overall change in the strength of density dependence. In this system, potential changes in the negative feedback processes operating on herbivore populations following nitrogen deposition appear to be buffered by concomitant changes in resource availability.  相似文献   

10.
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号