首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
The human insulin resistance syndromes—type 2 diabetes, obesity, combined hyperlipidemia, and essential hypertension—are genetically complex disorders whose molecular basis is largely unknown. The spontaneously hypertensive rate (SHR) is a model of these human syndromes. In the SHR/NCrlBR strain, a chromosomal deletion event that occurred at the Cd36 locus during the evolution of this SHR strain has been proposed as a cause of defective insulin action and fatty acid metabolism. In this study, three copies of the Cd36 gene, one transcribed copy and two pseudogenes, were identified in normal rat strains, but only a single gene in SHR/NCrlBR. Analysis of SHR genomic sequence localized the chromosomal deletion event between intron 4 of the normally transcribed copy of the gene and intron 4 of the second pseudogene. The deletion led to the creation of a single chimeric Cd36 gene in SHR/NCrlBR. The boundaries of the recombination/deletion junction identified within intron 4 were surrounded by long interspersed nuclear elements (LINEs) and DNA topoisomerase I recognition sequences. An 8-bp deletion at the intron 14/exon 15 boundary of the second pseudogene abolishes the putative splice acceptor site and is the cause of an aberrant 3′ UTR previously observed in SHR/NCrlBR. We conclude that in SHR/NCrlBR, the complex trait of insulin resistance and defective fatty acid metabolism is caused by Cd36 deficiency, resulting from a chromosomal deletion caused by unequal recombination. This demonstrates that chromosomal deletions caused by unequal recombination can be a cause of quantitative or complex mammalian phenotypes. Received: 7 September 2001 / Accepted: 3 October 2001  相似文献   

2.
3.
Pioglitazone, like other thiazolidinediones, is an insulin-sensitizing agent that activates the peroxisome proliferator-activated receptor gamma and influences the expression of multiple genes involved in carbohydrate and lipid metabolism. However, it is unknown which of these many target genes play primary roles in determining the antidiabetic and hypolipidemic effects of thiazolidinediones. To specifically investigate the role of the Cd36 fatty acid transporter gene in the insulin-sensitizing actions of thiazolidinediones, we studied the metabolic effects of pioglitazone in spontaneously hypertensive rats (SHR) that harbor a deletion mutation in Cd36 in comparison to congenic and transgenic strains of SHR that express wild-type Cd36. In congenic and transgenic SHR with wild-type Cd36, administration of pioglitazone was associated with significantly lower circulating levels of fatty acids, triglycerides, and insulin as well as lower hepatic triglyceride levels and epididymal fat pad weights than in SHR harboring mutant Cd36. Additionally, insulin-stimulated glucose oxidation in isolated soleus muscle was significantly augmented in pioglitazone-fed rats with wild-type Cd36 versus those with mutant Cd36. The Cd36 genotype had no effect on pioglitazone-induced changes in blood pressure. These findings provide direct pharmacogenetic evidence that in the SHR model, Cd36 is a key determinant of the insulin-sensitizing actions of a thiazolidinedione ligand of peroxisome proliferator-activated receptor gamma.  相似文献   

4.
Close links between hypertension, hypertriglyceridemia, insulin resistance and other symptoms of metabolic syndrome was demonstrated in humans and experimental animals. Quantitative trait loci for defects in glucose and fatty acid metabolism, hypertriglyceridemia and hypertension were mapped in spontaneously hypertensive rats (SHR) on chromosome 4 and defective Cd36 gene was identified in this region. Here we investigated the polymorphism of Cd36 gene in Prague hereditary hypertriglyceridemic (HTG) rats, which represent another model of genetic hypertension and metabolic syndrome. These animals were compared with NIH-derived SHR and two different normotensive control strains (WKY, LEW). In spite of the fact that HTG and SHR rats had similar metabolic disturbances, genotype analysis of PCR products has shown that Cd36 mutation was not present in HTG rats. In conclusion, we have revealed that defective Cd36 is probably a candidate gene for disorded fatty-acid metabolism, glucose intolerance and insulin resistance in NIH-derived SHR, but other genes might play a role in pathogenesis of metabolic syndrome in Prague hereditary hypertriglyceridemic rats. This is in accordance with the absence of defective Cd36 gene in original SHR from Japan.  相似文献   

5.
Hypertension, dyslipidemia, and insulin resistance in the spontaneously hypertensive rat (SHR) can be alleviated by rescuing CD36 fatty acid translocase. The present study investigated whether transgenic rescue of CD36 in SHR could affect mitochondrial function and activity of selected metabolic enzymes in the heart. These analyses were conducted on ventricular preparations derived from SHR and from transgenic strain SHR-Cd36 that expresses a functional wild-type CD36. Our respirometric measurements revealed that mitochondria isolated from the left ventricles exhibited two times higher respiratory activity than those isolated from the right ventricles. Whereas, we did not observe any significant changes in functioning of the mitochondrial respiratory system between both rat strains, enzyme activities of total hexokinase, and both mitochondrial and total malate dehydrogenase were markedly decreased in the left ventricles of transgenic rats, compared to SHR. We also detected downregulated expression of the succinate dehydrogenase subunit SdhB (complex II) and 70 kDa peroxisomal membrane protein in the left ventricles of SHR-Cd36. These data indicate that CD36 may affect in a unique fashion metabolic substrate flexibility of the left and right ventricles.  相似文献   

6.
The spontaneously hypertensive rat (SHR) is a model of human insulin resistance syndrome. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism have been mapped to an overlapping region of rat chromosome (RNO) RNO4 in SHR of the National Institute of Health colony, where a deletion in the Cd36 gene has been implicated as the causative mutation of insulin resistance. The present study has examined the potential presence of RNO4 linkage to a series of metabolic phenotypes in F(2) progeny derived from SHR of a Japanese colony (SHR/Izm) without the Cd36 mutation. Our data demonstrate that 'major' insulin resistance gene(s) are unlikely to exist on RNO4 in SHR/Izm and in vitro phenotypes measured in isolated adipocytes do not cosegregate in the F(2) population studied. Thus, it seems to be difficult to explain the underlying genetic mechanisms of insulin resistance by a single major gene on RNO4.  相似文献   

7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号