首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
《Chronobiology international》2013,30(5-6):393-402
Aminoglycoside antibiotics produce varying degrees of ototoxicity, dependent on dosage time, in animals synchronized for rhythm study. Herein, we illustrate the use of an economical and reliable system to telemeter body temperature of laboratory animals as an endogenous marker rhythm for gentamicin-induxed ototoxicity. Two groups of 3 male Sprague-Dawley rats (250–400 gm) were housed in separate cages in a temperature-controlled room programmed with a 12:12 LD schedule and monitored for hearing thresholds at the frequencies of 8kHz, 16kHz, 24kHz and 32kHz at 2-week intervals. Each rat was dosed with 100 mg/kg/day gentamicin subcutaneously for a duration of 28 days. The animals from one group were dosed at their daily temperature maximum, while the animals of the other group were dosed at their daily temperature minimum. Both after 14 and 28 days of gentamicin treatment there was no important changes in auditory thresholds from baseline values when treatment was timed daily to the circadian peak of body temperature. Animals dosed daily at the trough of the circadian temperature rhythm evidenced an auditory threshold shift of between 5 and 25 dB after 14 days of treatment and a total hearing loss (80–90 dB) after 28 days of such treatment. These results document a dramatically greater level of hearing loss induced in those animals dosed with gentamicin at the body temperature trough (diurnal rest span) as compared to those dosed at the acrophase (nocturnal activity span). The findings indicate that the peak and trough of the circadian pattern of body temperature serve as meaningful markers of the resistance and susceptibility, respectively, of gentamicin-induced ototoxicity in rodent models.  相似文献   

2.
Aminoglycoside antibiotics produce varying degrees of ototoxicity, dependent on dosage time, in animals synchronized for rhythm study. Herein, we illustrate the use of an economical and reliable system to telemeter body temperature of laboratory animals as an endogenous marker rhythm for gentamicin-induced ototoxicity. Two groups of 3 male Sprague-Dawley rats (250-400 gm) were housed in separate cages in a temperature-controlled room programmed with a 12:12 LD schedule and monitored for hearing thresholds at the frequencies of 8kHz, 16 kHz, 24 kHz and 32 kHz at 2-week intervals. Each rat was dosed with 100 mg/kg/day gentamicin subcutaneously for a duration of 28 days. The animals from one group were dosed at their daily temperature maximum, while the animals of the other group were dosed at their daily temperature minimum. Both after 14 and 28 days of gentamicin treatment there was no important changes in auditory thresholds from baseline values when treatment was timed daily to the circadian peak of body temperature. Animals dosed daily at the trough of the circadian temperature rhythm evidenced an auditory threshold shift of between 5 and 25 dB after 14 days of treatment and a total hearing loss (80-90 dB) after 28 days of such treatment. These results document a dramatically greater level of hearing loss induced in those animals dosed with gentamicin at the body temperature trough (diurnal rest span) as compared to those dosed at the acrophase (nocturnal activity span). The findings indicate that the peak and trough of the circadian pattern of body temperature serve as meaningful markers of the resistance and susceptibility, respectively, of gentamicin-induced ototoxicity in rodent models.  相似文献   

3.
《Chronobiology international》2013,30(9):1223-1232
The aminoglycoside antibiotic gentamicin can cause both ototoxicity and nephrotoxicity, the severity of which varies with circadian time of daily treatment. However, it is not yet resolved if such drug-induced adverse effects are independent or interdependent phenomena. Two groups of 9 female Sprague-Dawley rats (200–250?g), each housed separately and entrained to a 12?h light (06:00–18:00?h) – 12?h dark cycle, received a daily subcutaneous injection of 100?mg/kg gentamicin. One group was treated at the beginning of the activity span, 2 Hours After Lights On (HALO), and the other at the beginning of the rest span, 14 HALO. Global toxicity was gauged by both body weight loss relative to the pre-treatment baseline and number of deaths. Ototoxicity, i.e., hearing loss, was assessed by changes in auditory brainstem response (ABR) for pure tone stimuli of 8, 16, 24, and 32?kHz before and after 2 and 4 weeks of gentamicin treatment. Renal toxicity was evaluated by changes in urinary N-acetyl-β-glucosaminidase (NAG)/creatinine (CR) concentration ratio before and after each week of treatment. In a complementary substudy of separate but comparable 2 and 14 HALO groups of rats, blood samples were obtained before and 30, 60, 120, and 240?min post-subcutaneous injection of 100?mg/kg gentamicin. Number of animal deaths was greater in the 2 (4 deaths) than 14 HALO (1 death) group, mirroring more severe initial (first two weeks of treatment) body weight losses from baseline, being more than 2-fold greater in animals of the 2 than 14 HALO group. Ototoxicity progressively worsened during the treatment; although, the extent of hearing loss varied according to circadian time of treatment across all frequencies (p?<?0.05), particularly the 24 and 32?kHz ones (both p?<?0.005), both at the 2 and 4 week assessments. At 32?kHz after 4 weeks of gentamicin dosing, the 2 HALO group showed an average 42?dB hearing loss, while the 14 HALO group exhibited only an average 10?dB loss. ABR response latencies were longer for the 2 than 14 HALO rats. The time course of nephrotoxicity differed from that of ototoxicity. The mean urinary NAG/CR ratio peaked after the first week of treatment, averaging 13.64-fold greater than baseline for the 2 HALO-treated animals compared to 7.38-fold greater than baseline for the 14 HALO-treated ones. Ratio values declined thereafter; although, even after the second week of dosing, they remained greater in the 2 than 14 HALO group (averaging 8.15-fold greater and 2.23-fold greater than baseline, respectively). Pharmacokinetic analysis of the blood gentamicin values revealed slower clearance, on average by ~25% (p?<?0.001), in the rats of the 14 than 2 HALO group (x?±?S.E.: 3.22?±?0.49 and 4.53?±?0.63?mL/min/kg, respectively). The study findings indicate robust difference of the time course in rats of both treatment groups of gentamicin-induced ototoxicity and nephrotoxicity, supporting the hypothesis these organ toxicities are independent of one another, and further suggest the observed treatment-time differences in gentamicin adverse effects may be more dependent on local cell, tissue, or organ circadian (chrono) pharmacodynamic than (chrono) pharmacokinetic mechanisms.  相似文献   

4.
5.
Prolonged food deprivation is known to cause a fall in the core body temperature of homeotherms. In various species of small birds and mammals (body mass up to 2–3 kg), it has been shown that starvation-induced hypothermia is modulated by the circadian system, in the sense that hypothermia is observed primarily during the inactive phase of the daily activity cycle (i.e., during the night for diurnal animals and during the day for nocturnal animals), whereas relatively normal temperatures are recorded during the active phase. To investigate whether this modulation occurs also in larger animals, we investigated the effects of 4d food deprivation on the body temperature rhythm of goats and sheep (body mass 30–40 kg). In goats, the body temperature rhythm was found to have a mean level of 39.0°C with a mean daily range of excursion of 0.42°C. The daily oscillation in body temperature persisted during the first day of fasting, but the rhythm was drastically damped, if not eliminated, over the next 3 d as body temperature descended from the baseline level of 39.0 to 38.2°C. In sheep, the rhythm was found to have a mean level of 39.3°C with a mean daily range of excursion of 0.34°C. The daily oscillation in body temperature persisted through the 4 d of food deprivation, even though the mean level of body temperature gradually fell. Temperature fell more during the third and fourth nights than during the third and fourth days. Thus, circadian modulation of starvation-induced hypothermia was observed in sheep but not in goats.  相似文献   

6.
Prolonged food deprivation is known to cause a fall in the core body temperature of homeotherms. In various species of small birds and mammals (body mass up to 2-3 kg), it has been shown that starvation-induced hypothermia is modulated by the circadian system, in the sense that hypothermia is observed primarily during the inactive phase of the daily activity cycle (i.e., during the night for diurnal animals and during the day for nocturnal animals), whereas relatively normal temperatures are recorded during the active phase. To investigate whether this modulation occurs also in larger animals, we investigated the effects of 4d food deprivation on the body temperature rhythm of goats and sheep (body mass 30-40 kg). In goats, the body temperature rhythm was found to have a mean level of 39.0°C with a mean daily range of excursion of 0.42°C. The daily oscillation in body temperature persisted during the first day of fasting, but the rhythm was drastically damped, if not eliminated, over the next 3 d as body temperature descended from the baseline level of 39.0 to 38.2°C. In sheep, the rhythm was found to have a mean level of 39.3°C with a mean daily range of excursion of 0.34°C. The daily oscillation in body temperature persisted through the 4 d of food deprivation, even though the mean level of body temperature gradually fell. Temperature fell more during the third and fourth nights than during the third and fourth days. Thus, circadian modulation of starvation-induced hypothermia was observed in sheep but not in goats.  相似文献   

7.
Absolute hearing thresholds in the spear-nosed bat Phyllostomus discolor have been determined both with psychophysical and neurophysiological methods. Neurophysiological data have been obtained from two different structures of the ascending auditory pathway, the inferior colliculus and the auditory cortex. Minimum auditory thresholds of neurons are very similar in both structures. Lowest absolute thresholds of 0 dB SPL are reached at frequencies from about 35 to 55 kHz in both cases. Overall behavioural sensitivity is roughly 20 dB better than neural sensitivity. The behavioural audiogram shows a first threshold dip around 23 kHz but threshold was lowest at 80 kHz (−10 dB SPL). This high sensitivity at 80 kHz is not reflected in the neural data. The data suggest that P. discolor has considerably better absolute auditory thresholds than estimated previously. The psychophysical and neurophysiological data are compared to other phyllostomid bats and differences are discussed. S. Hoffmann, L. Baier, F. Borina contributed equally to this work.  相似文献   

8.
Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63±2.10, 8.56±5.75, 21.06±11.06, 40.79±20.36 decibel (dB), respectively and that of the smokers were 7±3.8, 13.27±8.4, 30.66±12.50 and 56.88±21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16±19.87 dB) at 12 kHz frequency compared with that (41.52±19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies.  相似文献   

9.
This review first examines reliable and convenient ways of measuring core temperature for studying the circadian rhythm, concluding that measurements of rectal and gut temperature fulfil these requirements, but that insulated axilla temperature does not. The origin of the circadian rhythm of core temperature is mainly due to circadian changes in the rate of loss of heat through the extremities, mediated by vasodilatation of the cutaneous vasculature. Difficulties arise when the rhythm of core temperature is used as a marker of the body clock, since it is also affected by the sleep-wake cycle. This masking effect can be overcome directly by constant routines and indirectly by “purification” methods, several of which are described. Evidence supports the value of purification methods to act as a substitute when constant routines cannot be performed. Since many of the mechanisms that rise to the circadian rhythm of core temperature are the same as those that occur during thermoregulation in exercise, there is an interaction between the two. This interaction is manifest in the initial response to spontaneous activity and to mild exercise, body temperature rising more quickly and thermoregulatory reflexes being recruited less quickly around the trough and rising phase of the resting temperature rhythm, in comparison with the peak and falling phase. There are also implications for athletes, who need to exercise maximally and with minimal risk of muscle injury or heat exhaustion in a variety of ambient temperatures and at different times of the day. Understanding the circadian rhythm of core temperature may reduce potential hazards due to the time of day when exercise is performed.  相似文献   

10.
This review first examines reliable and convenient ways of measuring core temperature for studying the circadian rhythm, concluding that measurements of rectal and gut temperature fulfil these requirements, but that insulated axilla temperature does not. The origin of the circadian rhythm of core temperature is mainly due to circadian changes in the rate of loss of heat through the extremities, mediated by vasodilatation of the cutaneous vasculature. Difficulties arise when the rhythm of core temperature is used as a marker of the body clock, since it is also affected by the sleep‐wake cycle. This masking effect can be overcome directly by constant routines and indirectly by “purification” methods, several of which are described. Evidence supports the value of purification methods to act as a substitute when constant routines cannot be performed. Since many of the mechanisms that rise to the circadian rhythm of core temperature are the same as those that occur during thermoregulation in exercise, there is an interaction between the two. This interaction is manifest in the initial response to spontaneous activity and to mild exercise, body temperature rising more quickly and thermoregulatory reflexes being recruited less quickly around the trough and rising phase of the resting temperature rhythm, in comparison with the peak and falling phase. There are also implications for athletes, who need to exercise maximally and with minimal risk of muscle injury or heat exhaustion in a variety of ambient temperatures and at different times of the day. Understanding the circadian rhythm of core temperature may reduce potential hazards due to the time of day when exercise is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号