首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
The 47-kDa protein coimmunoprecipitated with phospholipase C (PLC)-gamma 1 by anti-PLC-gamma 1 monoclonal antibodies is proved to be Nck, a protein composed almost exclusively of one SH2 and three SH3 domains. Nck and PLC-gamma 1 are recognized by certain anti-PLC-gamma 1 monoclonal antibodies because Nck and PLC-gamma 1 share an epitope that likely is located in their SH3 domains. Nck is widely distributed in rat tissues, with an especially high level of expression in testes. The expression levels of Nck remains unchanged during the development of rat brain, whereas PLC-gamma 1 decreases during the same developmental period. Stimulation of A431 cells with epidermal growth factor elicits the tight association of Nck with the epidermal growth factor receptor and phosphorylation of Nck on both serine and tyrosine residues. The phosphorylation of Nck is also enhanced in response to stimulation of the nerve growth factor receptor in PC12 cells, the T-cell receptor complex in Jurkat cells, the membrane immunoglobulin M in Daudi cells, and the low-affinity immunoglobulin G receptor (Fc gamma RII) in U937 cells. The phosphorylation of Nck was also enhanced following treatment of A431 cells with phorbol 12-myristate 13-acetate or forskolin. These results suggest that Nck is a target for a variety of protein kinases that might modulate the postulated role of Nck as an adaptor for the physical and functional coordination of signalling proteins.  相似文献   

2.
In the course of our investigation of phospholipase C (PLC)-gamma 1 phosphorylation by using a set of anti-PLC-gamma 1 monoclonal antibodies (P.-G. Suh, S. H. Ryu, W. C. Choi, K.-Y. Lee, and S. G. Rhee, J. Biol. Chem. 263:14497-14504, 1988), we found that some of these antibodies directly recognize a 47-kDa protein. We show here that this 47-kDa protein is identical to the SH2/SH3-containing protein Nck (J. M. Lehmann, G. Riethmuller, and J. P. Johnson, Nucleic Acids Res. 18:1048, 1990). Nck was found to be constitutively phosphorylated on serine in resting NIH 3T3 cells. Platelet-derived growth factor (PDGF) treatment led to increased Nck phosphorylation on both tyrosine and serine. Nck was also found to be phosphorylated on tyrosine in epidermal growth factor (EGF)-treated A431 cells and in v-Src-transformed NIH 3T3 cells. Multiple sites of serine phosphorylation were detected in Nck from resting cells, and no novel sites were found upon PDGF or EGF treatment. A single major tyrosine phosphorylation site was found in Nck in both PDGF- and EGF-treated cells and in v-Src-transformed cells. This same tyrosine was phosphorylated in vitro by purified PDGF and EGF receptors and also by pp60c-src. We compared the phosphorylation of Nck and PLC-gamma 1 in several cell lines transformed by oncogenes with different modes of transformation. Although PLC-gamma 1 and Nck have significant amino acid identity, particularly in their SH3 regions, and both associate with growth factor receptors in a ligand-dependent manner, they were not always phosphorylated on tyrosine in a coincident manner.  相似文献   

3.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

4.
We have established the human nck sequence as a new oncogene. Nck encodes one SH2 and three SH3 domains, the Src homology motifs found in nonreceptor tyrosine kinases, Ras GTPase-activating protein, phosphatidylinositol 3-kinase, and phospholipase C-gamma. Overexpression of human nck in 3Y1 rat fibroblasts results in transformation as judged by alteration of cell morphology, colony formation in soft agar, and tumor formation in nude BALB/c mice. However, overexpression of nck does not induce detectable elevation of the phosphotyrosine content of specific proteins, as is observed for v-crk, another SH2/SH3-containing oncogene. Despite this fact, we demonstrate that Nck retains the ability to bind tyrosine phosphorylated proteins in vitro, using a fusion protein of Nck with glutathione-S-transferase (GST). Moreover, when incubated with lysates prepared from v-src-transformed 3Y1 cells or the nck-overexpressing cell lines, GST-Nck binds to both p60v-src and serine/threonine kinases, respectively. Although phosphotyrosine levels are not elevated in the nck-expressing fibroblasts, vanadate treatment of these cells results in a phosphotyrosine pattern that is altered from the parental 3Y1 pattern, suggestive of a perturbation of indigenous tyrosine kinase pathways. These results suggest the possibility that human nck induces transformation in 3Y1 fibroblasts by virtue of its altered affinity or specificity for the normal substrates of its rat homolog and that Nck may play a role in linking tyrosine and serine/threonine kinase pathways within the cell.  相似文献   

5.
Recruitment of cellular signaling proteins by the CD3 polypeptides of the TCR complex mediates T cell activation. We have screened a human Src homology 3 (SH3) domain phage display library for proteins that can bind to the proline-rich region of CD3epsilon. This screening identified Eps8L1 (epidermal growth factor receptor pathway substrate 8-like 1) together with the N-terminal SH3 domain of Nck1 and Nck2 as its preferred SH3 partners. Studies with recombinant proteins confirmed strong binding of CD3epsilon to Eps8L1 and Nck SH3 domains. CD3epsilon bound well also to Eps8 and Eps8L3, and modestly to Eps8L2, but not detectably to other SH3 domains tested. Interestingly, binding of Nck and Eps8L1 SH3 domains was mapped to a PxxDY motif that shared its tyrosine residue (Y166) with the ITAM of CD3epsilon. Phosphorylation of this residue abolished binding of Eps/Nck SH3 domains in peptide spot filter assays, as well as in cells cotransfected with a dominantly active Lck kinase. TCR ligation-induced binding and phosphorylation-dependent loss of binding were also demonstrated between Eps8L1 and endogenous CD3epsilon in Jurkat T cells. Thus, phosphorylation of Y166 serves as a molecular switch during T cell activation that determines the capacity of CD3epsilon to interact with either SH3 or SH2 domain-containing proteins.  相似文献   

6.
A murine embryonic cDNA library was screened for potential substrates of the Src family kinase, Lyn, using a phosphorylation-screening strategy. One cDNA that we identified encodes Dok-related protein (DokR), a protein with homology to p62(dok) (Dok), and members of the insulin receptor substrate-1 family of proteins. Analysis of murine tissue extracts with DokR-specific antisera revealed that DokR protein is expressed at highest levels in lymphoid tissues. Co-expression of a FLAG epitope-tagged form of DokR (FLAG-DokR) with Lyn in embryonic kidney 293T cells resulted in constitutive phosphorylation of FLAG-DokR on tyrosine residues and consequential physical association with RasGTPase-activating protein (GAP) and the Nck adaptor protein. Stimulation of BaF/3 hematopoietic cells co-expressing the epidermal growth factor (EGF) receptor tyrosine kinase and FLAG-DokR with EGF also induced phosphorylation of FLAG-DokR and promoted its association with GAP. Immunoprecipitation experiments using DokR-specific antibodies revealed an interaction between endogenous DokR and a 150-kDa protein that is tyrosine-phosphorylated in EGF-stimulated BaF/3 cells. The molecular basis of the interactions involving DokR with GAP and Nck was investigated using a novel glutathione S-transferase fusion protein binding assay and/or site-directed mutagenesis. Tandem SH2-binding sites containing Tyr-276 and Tyr-304 were shown to mediate binding of DokR to GAP, whereas Tyr-351 mediated the binding of DokR to Nck. These results suggest that DokR participates in numerous signaling pathways.  相似文献   

7.
Many ligand-independent receptor tyrosine kinases are tumorigenic. The biochemical signals that mediate ligand-independent transformation of cells by these transmembrane receptors are poorly defined. In this report, we demonstrate that a constitutively activated mutant epidermal growth factor receptor (v-ErbB) induces the formation of a transformation-specific signaling module that complexes with myosin II. The components of this signaling complex include the signal adapter proteins Shc, Grb2, and Nck, and tyrosine-phosphorylated forms of p21-activated kinase (Pak), caldesmon, and myosin light chain kinase. Transformation-specific, tyrosine phosphorylation of Pak enhances the catalytic activity of this serine/threonine kinase. Furthermore, the tyrosine phosphorylation of Pak is Rho-, but not Ras-, Rac-, or Cdc42-dependent. These results demonstrate that a ligand-independent epidermal growth factor receptor mutant can transduce oncogenic signals that are distinct from ligand-dependent, mitogenic signals. In addition, these data provide evidence for the coupling of oncogenic receptor tyrosine kinases with the actomyosin molecular motor. This myosin-associated signaling module may mediate some of the biochemical changes of myosin found in v-ErbB- transformed fibroblasts, thereby contributing to the regulation of the mechanical forces governing cellular adhesion, cytoskeletal tension, and, hence, anchorage-independent cell growth.  相似文献   

8.

Background

Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.

Results

Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.

Conclusion

Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.
  相似文献   

9.
The cellular Bcr protein consists of an N-terminal serine/threonine kinase domain, a central guanine nucleotide exchange factor homology region and a C-terminal GTPase-activating protein domain. Previous work in our laboratory established that Bcr is a major transformation-related substrate for the v-Fps tyrosine kinase, and tyrosine phosphorylation of Bcr induces Bcr-Grb-2/SOS association in vivo through the Src homology 2 (SH2) domain of Grb-2. In the present study, we mapped the region of Bcr tyrosine phosphorylation by c-Fes, the human homologue of v-Fps, to Bcr N-terminal amino acids 162-413 by using a baculovirus/Sf-9 cell co-expression system. Tyrosine phosphorylation of Bcr by Fes greatly enhanced the binding of Bcr to the SH2 domains of multiple signalling molecules in vitro, including Grb-2, Ras GTPase activating protein, phospholipase C-gamma, the 85,000 M(r) subunit of phosphatidylinositol 3'-kinase, and the Abl tyrosine kinase. In contrast with SH2 binding, tyrosine phosphorylation of Bcr reduced its ability to associate with the 14-3-3 protein Bap-1 (Bcr-associated protein-1), a Bcr substrate and member of a family of phosphoserine-binding adaptor proteins. These experiments provide in vitro evidence that tyrosine phosphorylation may modulate the interaction of Bcr with multiple growth-regulatory signalling pathways.  相似文献   

10.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号