首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The function of the gene gilgamesh (89B9-12) encoding a casein kinase in Drosophila spermatogenesis was studied. The chimeric Gilgamesh-GFP protein in spermatocytes is cortically located. In the polar and apolar spermatocytes, it concentrates at the terminal ends of the fusome, the organelle that passes through the system of ring canals of the spermatocyte cyst. At the stage of spermatid elongation, the protein associates with the nucleus. A spot of the highest Gilgamesh-GFP concentration in the nucleus co-localizes with γ-tubulin in the basal body. At later stages, Gilgamesh is localized to the individualization complex (IC), leaving the nuclei somewhat before the IC investment cones, as detected by actin binding. The sterile mutation due to the gilgamesh gene leads to the phenotype of scattered nuclei and altered structure of actin cones in the individualizing spermatid cyst. Ultrastructural evidence confirmed defective spermatid individualization due to the mutation. The phylogenetic origin of the protein, and the connection between vesicular trafficking and spermatid individualization, are discussed.  相似文献   

3.
4.
5.
Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known “nectinopathy” caused by mutations in a nectin adhesion molecule.  相似文献   

6.
Actin pools have been evaluated in Drosophila melanogaster Kc 0% cells, through an actin assay based on differential inhibition of DNase I by globular (G) and filamentous (F) actin. Total actin represents about 4 % of total proteins and 54 % is G-actin. In ecdysterone treated cells (0.1 μM), the total actin content increases up to 9 % of total proteins after 3 days of treatment. Ecdysterone induces increase of G-actin as well as F-actin. Increase of both actins, detectable after only 24 hrs of treatment, is roughly parallel during the first two days of treatment. For longer hormonal treatment, actin polymerization is more important than accumulation of G-actin. Indirect immunofluorescence microscopy with antibodies to exogeneous DNase I suggests that actin is widely distributed in the whole cytoplasm before and after ecdysterone treatment. These results suggest that ecdysterone induces actin synthesis and polymerization in Drosophila melanogaster cells.  相似文献   

7.
ADF/cofilin is a highly conserved actin-modulating protein. Reorganization of the actin cytoskeleton in vivo through severing and depolymerizing of F-actin by this protein is essential for various cellular events, such as endocytosis, phagocytosis, cytokinesis, and cell migration. We show that in the ciliate Tetrahymena thermophila, the ADF/cofilin homologue Adf73p associates with actin on nascent food vacuoles. Overexpression of Adf73p disrupted the proper localization of actin and inhibited the formation of food vacuoles. In vitro, recombinant Adf73p promoted the depolymerization of filaments made of T. thermophila actin (Act1p). Knockout cells lacking the ADF73 gene are viable but grow extremely slowly and have a severely decreased rate of food vacuole formation. Knockout cells have abnormal aggregates of actin in the cytoplasm. Surprisingly, unlike the case in animals and yeasts, in Tetrahymena, ADF/cofilin is not required for cytokinesis. Thus, the Tetrahymena model shows promise for future studies of the role of ADF/cofilin in vivo.  相似文献   

8.
In eukaryotes, mRNA is actively transported from nucleus to cytoplasm by a family of nuclear RNA export factors (NXF). While yeast harbors only one such factor (Mex67p), higher eukaryotes encode multiple NXFs. In mouse, four Nxf genes have been identified: Nxf1, Nxf2, Nxf3, and Nxf7. To date, the function of mouse Nxf genes has not been studied by targeted gene deletion in vivo. Here we report the generation of Nxf2 null mutant mice by homologous recombination in embryonic stem cells. Nxf2-deficient male mice exhibit fertility defects that differ between mouse strains. One third of Nxf2-deficient males on a mixed (C57BL/6 × 129) genetic background exhibit meiotic arrest and thus are sterile, whereas the remaining males are fertile. Disruption of Nxf2 in inbred (C57BL/6J) males impairs spermatogenesis, resulting in male subfertility, but causes no meiotic arrest. Testis weight and sperm output in C57BL/6J Nxf2−/Y mice are sharply reduced. Mutant epididymal sperm exhibit diminished motility. Importantly, proliferation of spermatogonia in Nxf2−/Y mice is significantly decreased. As a result, inactivation of Nxf2 causes depletion of germ cells in a substantial fraction of seminiferous tubules in aged mice. These studies demonstrate that Nxf2 plays a dual function in spermatogenesis: regulation of meiosis and maintenance of spermatogonial stem cells.  相似文献   

9.
Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. In previous studies, we demonstrated that the increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP2). Here, we showed for the first time the involvement of PIP2/gelsolin in human sperm motility before and during capacitation. Activation of gelsolin by causing its release from PIP2 inhibited sperm motility, which could be restored by adding PIP2 to the cells. Reduction of PIP2 synthesis inhibited actin polymerization and motility, and increasing PIP2 synthesis enhanced these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP2 and F-actin. During capacitation there was an increase in PIP2 and F-actin levels in the sperm head and a decrease in the tail. In sperm with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends on its binding to PIP2. Activation of phospholipase C by Ca2+-ionophore or by activating the epidermal-growth-factor-receptor inhibits tyrosine phosphorylation of gelsolin. In conclusion, the data indicate that the increase of PIP2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result the decrease of gelsolin in the tail allows keeping high level of F-actin in the tail, which is essential for the development of HA motility.  相似文献   

10.
Actin-depolymerizing factor (ADF)/cofilin is a well-conserved actin-modulating protein, which induces reorganization of the actin cytoskeleton by severing and depolymerizing F-actin. ADF/cofilin also binds to G-actin and inhibits nucleotide exchange, and hence, is supposed to regulate the nucleotide-bound state of the cellular G-actin pool cooperating with profilin, another well-conserved G-actin-binding protein that promotes nucleotide exchange. In this report, we investigated the biochemical properties of the ADF/cofilin-like protein Adf73p from ciliate Tetrahymena thermophila. Adf73p also binds to both G- and F-actin and severs and depolymerizes F-actin. Unlike canonical ADF/cofilin, however, Adf73p accelerates nucleotide exchange on actin and allows repolymerization of disassembled actin. These results suggest that the actin cytoskeleton of T. thermophila is regulated by Adf73p in a different way from those of mammals, plants, and yeasts.  相似文献   

11.
12.
Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in ∼60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.  相似文献   

13.
14.
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.  相似文献   

15.
Hearing loss is one of the most common sensory disorders in humans and has a genetic cause in 50% of the cases. Our recent studies indicate that nonsyndromic hearing loss (NSHL) in the Saudi Arabian population is genetically heterogeneous and is not caused by mutations in GJB2 and GJB6, the most common genes for deafness in various populations worldwide. Identification of the causative gene/mutation in affected families is difficult due to extreme genetic heterogeneity and lack of phenotypic variability. We utilized an SNP array-based whole-genome homozygosity mapping approach in search of the causative gene, for the phenotype in a consanguineous Saudi family, with five affected individuals presenting severe to profound congenital NSHL. A single shared block of homozygosity was identified on chromosome 19p13.3 encompassing GIPC3, a recently identified hearing loss gene. Subsequently, a novel mutation c.122 C>A (p.T41K) in GIPC3 was found. This is the first report of GIPC3 mutation in a Saudi family. The presence of the GIPC3 mutations in only one of 100 Saudi families with congenital NSHL suggests that it appears to be a rare cause of familial or sporadic deafness in this population.  相似文献   

16.
17.
Mice inoculated by stomach intubation with 10,000 embryonated Ascaris suum eggs, 4, 11, or 21 days before an intraperitoneal (ip) immunization with 2 × 108 sheep erythrocytes (SRBC) had reduced numbers of direct (IgM) splenic hemolytic plaques measured at 4 days after immunization and only a marginal reduction in indirect plaques (IgG) measured at 9 days after immunization. Lower dosages of Ascaris eggs or simultaneous inoculation of Ascaris eggs and SRBC did not suppress antibody responses to SRBC. No reduction in a secondary antibody response to SRBC injected 4 days after Ascaris inoculation was observed. IgM and IgG hemagglutinin titers, as distinguished by 2-mercaptoethanol sensitivity, were suppressed in mice injected ip with 108 SRBC 10 days following inoculation of 10,000 Ascaris eggs, but titers in both Ig classes were similar in infected and control mice injected with 2 × 109 SRBC. At Day 20, antibody titers following ip injection of 1.0 or 100 μg of ovalbumin in alum were reduced in mice infected with 10,000 Ascaris eggs 4 days before antigen injection.Contact hypersensitivity to oxazalone was not altered in mice sensitized at 5 or 14 days after inoculation of 10,000 Ascaris eggs. The delayed hypersensitivity response, measured by footpad swelling, to an optimum intravenous sensitizing dosage of SRBC was inhibited in mice sensitized 10 days after Ascaris infection, but not inhibited in mice sensitized at 21 or 32 days after infection. In contrast, the delayed hypersensitivity response to subcutaneous sensitization with SRBC 10 days after Ascaris infection was not altered.  相似文献   

18.
Juxtamembrane signaling via the membrane growth factor KitL is critical for Kit mediated functions. KitL has a conserved cytoplasmic domain and has been shown to possess a monomeric leucine-dependent basolateral targeting signal. To investigate the consequences in vivo of impaired basolateral KitL targeting in polarized epithelial cells, we have mutated this critical leucine to alanine using a knock-in strategy. KitLL263A/L263A mutant mice are pigmented normally and steady-state hematopoiesis is unaffected although peritoneal and skin mast cell numbers are significantly increased. KitL localization is affected in the Sertoli cells of the KitLL263A/L263A testis and testis size is reduced in these mice due to aberrant spermatogonial proliferation. Furthermore, the effect of the KitL L263A mutation on the testicular phenotype is dosage dependent. The tubules of hemizygous KitLL263A/Sl mice completely lack germ cells in contrast to the weaker testicular phenotype of KitLL263A/L263A mice. The onset of the testis phenotype coincides with the formation of tight junctions between Sertoli cells during postnatal development. Thus, the altered sorting of KitL is dispensable for hematopoietic and melanogenic lineages, yet is crucial in the testicular environment, where the basal membranes of adjacent polarized Sertoli cells form a niche for the proliferating spermatogonia.  相似文献   

19.
Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline β-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.  相似文献   

20.
Large-scale gene expression analysis has been applied recently to uncover groups of genes that are co-regulated in particular processes. Here we undertake such an analysis on CAP, a protein that participates in the regulation of the actin cytoskeleton and in cAMP signaling in Dictyostelium. microarray analysis revealed that loss of CAP altered the expression of many cytoskeletal components. One of these, the Rho GDP-dissociation inhibitor RhoGDI1, was analyzed further. RhoGDI1 null cells expressed lower amounts of CAP, which failed to accumulate predominantly at the cell cortex. To further position CAP in the corresponding signal transduction pathways we studied CAP localization and cellular functioning in mutants that have defects in several signaling components. CAP showed correct localization and dynamics in all analyzed strains except in mutants with deficient cAMP dependent protein kinase A activity, where CAP preferentially accumulated in crown shaped structures. Ectopic expression of CAP improved the efficiency of phagocytosis in Gβ-deficient cells and restored the pinocytosis, morphology and actin distribution defects in a PI3 kinase double mutant (pi3k1/2 null). Our results show that CAP acts at multiple crossroads and links signaling pathways to the actin cytoskeleton either by physical interaction with cytoskeletal components or through regulation of their gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号