首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The epiblast (EPI) and the primitive endoderm (PE), which constitute foundations for the future embryo body and yolk sac, build respectively deep and surface layers of the inner cell mass (ICM) of the blastocyst. Before reaching their target localization within the ICM, the PE and EPI precursor cells, which display distinct lineage-specific markers, are intermingled randomly. Since the ICM cells are produced in two successive rounds of asymmetric divisions at the 8→16 (primary inner cells) and 16→32 cell stage (secondary inner cells) it has been suggested that the fate of inner cells (decision to become EPI or PE) may depend on the time of their origin. Our method of dual labeling of embryos allowed us to distinguish between primary and secondary inner cells contributing ultimately to ICM. Our results show that the presence of two generations of inner cells in the 32-cell stage embryo is the source of heterogeneity within the ICM. We found some bias concerning the level of Fgf4 and Fgfr2 expression between primary and secondary inner cells, resulting from the distinct number of cells expressing these genes. Analysis of experimental aggregates constructed using different ratios of inner cells surrounded by outer cells revealed that the fate of cells does not depend exclusively on the timing of their generation, but also on the number of cells generated in each wave of asymmetric division. Taking together, the observed regulatory mechanism adjusting the proportion of outer to inner cells within the embryo may be mediated by FGF signaling.  相似文献   

6.
7.
8.
The first lineage decision during mammalian development is the establishment of the trophectoderm (TE) and the inner cell mass (ICM). The caudal-type homeodomain protein Cdx2 is implicated in the formation and maintenance of the TE in the mouse. However, the role of CDX2 during early embryonic development in primates is unknown. Here, we demonstrated that CDX2 mRNA levels were detectable in rhesus monkey oocytes, significantly upregulated in pronuclear stage zygotes, diminished in early cleaving embryos but restored again in compact morula and blastocyst stages. CDX2 protein was localized to the nucleus of TE cells but absent altogether in the ICM. Knockdown of CDX2 in monkey oocytes resulted in formation of early blastocyst-like embryos that failed to expand and ceased development. However, the ICM lineage of CDX2-deficient embryos supported the isolation of functional embryonic stem cells. These results provide evidence that CDX2 plays an essential role in functional TE formation during primate embryonic development.  相似文献   

9.
10.
The primitive endoderm (PE) and epiblast (EPI) are two lineages derived from the inner cell mass (ICM) of the E3.5 blastocyst. Although it has been shown that FGF signaling is necessary and sufficient for PE specification in the ICM, it is unknown what mechanisms control the PE/EPI proportion in the embryo. Because modulation of FGF signaling alone is sufficient to convert all ICM cells to either PE or EPI, a model has been proposed in which the amount of FGF in the embryo controls the PE/EPI proportion. To test this model, we reduced the amount of FGF4, the major FGF in the preimplantation embryo, using various genotypes of Fgf4 mutants. We observed a maternal contribution of Fgf4 in PE specification, but it was dispensable for development. In addition, upon treatment of Fgf4 mutant embryos with exogenous FGF4, we observed a progressive increase of PE proportions in an FGF4 dose dependent manner, regardless of embryo genotype. We conclude that the amount of FGF4 is limited and regulates PE/EPI proportions in the mouse embryo.  相似文献   

11.
During mouse early embryogenesis, blastomeres increase in number by the morula stage. Among them, the outer cells are polarized and differentiated into trophectoderm (TE), while the inner cells remain unpolarized and give rise to inner cell mass (ICM). TE provides an important liquid environment for ICM development. In spite of extensive research, the molecular mechanisms underlying TE formation are still obscure. In order to investigate the roles of estrogen receptor α (ERα) in this course, mouse 8‐cell embryos were collected and cultured in media containing ERα specific antagonist MPP and/or agonist PPT. The results indicated that MPP treatment inhibits blastocyst formation in a dose‐dependent manner, while PPT, at proper concentration, promotes the cavitation ratio of mouse embryos. Immunofluorescence staining results showed that MPP significantly decreased the nuclear expression of CDX2 in morula, but no significant changes of OCT4 were observed. Moreover, after MPP treatment, the expression levels of the genes related to TE specification, Tead4, Gata3 and Cdx2, were significantly reduced. Overall, these results indicated that ERα might affect mouse embryo cavitation by regulating TE lineage differentiation.  相似文献   

12.
13.
14.
15.
Cell differentiation during pre-implantation mammalian development involves the formation of two extra-embryonic lineages: trophoblast and primitive endoderm (PrE). A subset of cells within the inner cell mass (ICM) of the blastocyst does not respond to differentiation signals and forms the pluripotent epiblast, which gives rise to all of the tissues in the adult body. How this group of cells is set aside remains unknown. Recent studies documented distinct sequential phases of marker expression during the segregation of epiblast and PrE within the ICM. However, the connection between marker expression and lineage commitment remains unclear. Using a fluorescent reporter for PrE, we investigated the plasticity of epiblast and PrE precursors. Our observations reveal that loss of plasticity does not coincide directly with lineage restriction of epiblast and PrE markers, but rather with exclusion of the pluripotency marker Oct4 from the PrE. We note that individual ICM cells can contribute to all three lineages of the blastocyst until peri-implantation. However, epiblast precursors exhibit less plasticity than precursors of PrE, probably owing to differences in responsiveness to extracellular signalling. We therefore propose that the early embryo environment restricts the fate choice of epiblast but not PrE precursors, thus ensuring the formation and preservation of the pluripotent foetal lineage.  相似文献   

16.
17.
18.
19.
Recent in vitro experiments on immunosurgically isolated mouse inner cell masses (ICMs) have suggested that some ICM cells may retain the potential to form trophectoderm after initial blastocyst formation. These experiments relied almost solely on in vitro morphology for identification of trophectoderm derivatives and provided no proof that the putative trophectoderm cells were capable of functioning in utero. We present clear in vivo evidence that at least some cells in ICMs isolated from early blastocysts do retain the potential to form postimplantation trophectoderm derivatives. Early ICMs occasionally contributed to trophoblast fractions in ICM/morula aggregation chimeras. More strikingly, when aggregated with each other, these ICMs were capable of implanting in the uterus, a property of trophectoderm cells alone. Indeed, some aggregates reconstituted complete egg cylinders. However, ICMs isolated from later blastocysts rarely produced in vivo trophoblast, and it appears that the ability to form trophectoderm is lost around the 16–19 cell ICM stage. These results are discussed in relation to changing patterns of gene activity in early development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号