首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inactivation of the dead-end (Dnd1) gene in the Ter mouse strain results in depletion of primordial germ cells (PGCs) so that mice become sterile. However, on the 129 mouse strain background, loss of Dnd1 also increases testicular germ cell tumor incidence in parallel to PGC depletion. We report that inactivation of Dnd1 also affects embryonic viability in the 129 strain. Mouse Dnd1 encodes two protein isoforms, DND1-isoform alpha (DND1-alpha) and DND1-isoform beta (DND1-beta). Using isoform-specific antibodies, we determined DND1-alpha is expressed in embryos and embryonic gonads whereas DND1-beta expression is restricted to germ cells of the adult testis. Our data implicate DND1-alpha isoform to be necessary for germ cell viability and therefore its loss in Ter mice results in PGC depletion, germ cell tumor development and partial embryonic lethality in the 129 strain.  相似文献   

2.
3.
Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene “experimental testicular teratoma 1 (ett1)”. To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.  相似文献   

4.
Germ cell tumor development in humans has been proposed to be part of testicular dysgenesis syndrome (TDS), which manifests as undescended testes, sterility, hypospadias, and, in extreme cases, as germ cell tumors. Males of the Ter mouse strain show interesting parallels to TDS because they either lack germ cells and are sterile or develop testicular germ cell tumors. We found that these defects in Ter mice are due to mutational inactivation of the Dead-end (Dnd1) gene. Here we report that chromosome X modulates germ cell tumor development in Ter mice. We tested whether the X or the Y chromosome influences tumor incidence. We used chromosome substitution strains to generate two new mouse strains: 129-Ter/Ter that carry either a C57BL/6J (B6)-derived chromosome (Chr) X or Y. We found that Ter/Ter males with B6-Chr X, but not B6-Chr Y, showed a significant shift in propensity from testicular tumor development to sterile testes phenotype. Thus, our studies provide unambiguous evidence that genetic factors from Chr X modulate the incidence of germ cell tumors in mice with inactivated Dnd1. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
dead end (dnd) was identified in zebrafish as a gene encoding an RNA-binding protein essential for primordial germ cell (PGC) development and gametogenesis in vertebrates. The adult dnd RNA expression has been restricted to the ovary in Xenopus or to the testis in mouse. Its protein product is nuclear in chicken germ cells but both cytosolic and nuclear in mouse cell cultures. Here we report the cloning and expression pattern of Odnd, the medakafish (Oryzias latipes) dnd gene. Sequence comparison, gene structure, linkage analysis and expression demonstrate that Odnd encodes the medaka Dnd orthologue. A systematic comparison of Dnd proteins from five fishes and tetrapod representatives led to the identification of five previously unidentified conserved regions besides the RNA recognition motif. The Odnd RNA is maternally supplied and preferentially segregated with PGCs. Its adult expression occurs in both sexes and is restricted to germ cells. In the testis, Odnd is abundant in spermatogonia and meiotic cells but absent in sperm. In the ovary, Odnd RNA persists throughout oogenesis. Furthermore, we developed a dual color fluorescent in situ hybridization procedure allowing for precise comparisons of expression and distribution patterns between two genes in medaka embryos and adult tissues. Importantly, this procedure co-localized Odnd and Ovasa in testicular germ cells and PGCs. Surprisingly, by cell transfection and embryo RNA injection we show that ODnd is cytoplasmic in cell cultures, cleavage embryos and PGCs. Therefore, medaka dnd encodes a cytoplasmic protein and identifies embryonic and adult germ cells of both sexes.  相似文献   

7.
The ter (teratoma) gene causes germ cell deficiency and a high incidence of congenital testicular teratomas derived from primordial germ cells in 129/Sv- ter strain mice. Ovarian teratomas in LTXBJ mice originate from ovarian parthenotes. In order to study the function of the ter gene in germ cell development and teratocarcinogenesis, we examined the influence of a foreign genetic background on the ter action by introducing the ter gene of 129/Sv- ter strain mice into C57BL/6J, LTXBJ and C3H/HeJ genetic backgrounds by the backcross method and by thus establishing B6- ter , LTXBJ- ter and C3H- ter ter congenic strains, respectively. Histological analysis showed that germ cell deficiency occurred in both sexes of the ter mutants, through the fetal stages to adulthood, but that congenital testicular teratocarcinogenesis did not occur after the fifth backcross generation. The ter/ter gonads were smaller than normal (+/+ or +/ ter ). Experimental testicular teratomas never developed from intratesticular grafts of B6- ter genital ridges. LTXBJ- ter/ter females had no ovarian teratomas. It is concluded that the ter gene is solely responsible for germ cell deficiency, but not testicular teratocarcinogenesis, in ter congenic strains having background genes other than 129/Sv- ter and that the ter gene is not involved in ovarian teratocarcinogenesis.  相似文献   

8.
Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1ter/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats.  相似文献   

9.
10.
Vasa is a highly conserved ATP-dependent RNA helicase expressed mainly in germ cells. The vasa gene plays a crucial role in the development of germ cell lineage and has become an excellent molecular marker in identifying germ cells in teleosts. However, little is known about the structure and function of the vasa gene in flatfish. In this study, the vasa gene (Csvasa) was isolated and characterized in half-smooth tongue sole (Cynoglossus semilaevis), an economically important flatfish in China. In the obtained 6425-bp genomic sequence, 23 exons and 22 introns were identified. The Csvasa gene encodes a 663-amino acid protein, including highly conserved domains of the DEAD-box protein family. The amino acid sequence also shared a high homology with other teleosts. Csvasa expression was mainly restricted to the gonads, with little or no expression in other tissues. Real-time quantitative polymerase chain reaction analysis revealed that Csvasa expression levels decreased during embryonic and early developmental stages and increased with the primordial germ cell proliferation. A typical sexually dimorphic expression pattern of Csvasa was observed during early development and sex differentiation, suggesting that the Csvasa gene might play a differential role in the proliferation and differentiation of male and female primordial germ cells (PGCs). Csvasa mRNA expression levels in neomales were significantly lower than those in normal males and females, indicating that the Csvasa gene might be implicated in germ cell development after sex reversal by temperature treatment. In addition, medaka (Oryzias latipes) PGCs could be transiently labeled by microinjection of synthesized mRNA containing the green fluorescence protein gene and 3′-untranslated region of Csvasa, which confirmed that the Csvasa gene has the potential to be used as a visual molecular marker of germ cells and laid a foundation for manipulation of PGCs in tongue sole reproduction.  相似文献   

11.
12.
Lin Y  Page DC 《Developmental biology》2005,288(2):309-316
Genes of the DAZ family play critical roles in germ cell development in mammals and other animals. In mice, Dazl mRNA is first observed at embryonic day 11.5 (E11.5), but previous studies using Dazl-deficient mice of mixed genetic background have largely emphasized postnatal spermatogenic defects. Using an inbred C57BL/6 background, we show that Dazl is required for embryonic development and survival of XY germ cells. By E14.5, expression of germ cell markers (Mvh, Oct4, Dppa3/Stella, GCNA and MVH protein) was reduced in XY Dazl-/- gonads. By E15.5, most remaining germ cells in XY Dazl-/- embryos exhibited apoptotic morphology, and XY Dazl-/- gonads contained increased numbers of TUNEL-positive cells. The rare XY Dazl-/- germ cells that persisted until birth maintained a nuclear morphology that resembled that of wildtype germ cells at E12.5-E13.5, a critical developmental period when XY germ cells lose pluripotency and commit to a spermatogonial fate. We propose that Dazl is required as early as E12.5-E13.5, shortly after its expression is first detected, and that inbred Dazl-/- mice of C57BL/6 background provide a reproducible standard for exploring Dazl's roles in embryonic germ cell development.  相似文献   

13.
nanos1 is required to maintain oocyte production in adult zebrafish   总被引:1,自引:0,他引:1  
Development of the germline requires the specification and survival of primordial germ cells (PGCs) in the embryo as well as the maintenance of gamete production during the reproductive life of the adult. These processes appear to be fundamental to all Metazoans, and some components of the genetic pathway regulating germ cell development and function are evolutionarily conserved. In both vertebrates and invertebrates, nanos-related genes, which encode RNA-binding zinc finger proteins, have been shown to play essential and conserved roles during germ cell formation. In Drosophila, maternally supplied nanos is required for survival of PGCs in the embryo, while in adults, nanos is required for the continued production of oocytes by maintaining germline stem cells self-renewal. In mice and zebrafish, nanos orthologs are required for PGC survival during embryogenesis, but a role in adults has not been explored. We show here that nanos1 in zebrafish is expressed in early stage oocytes in the adult female germline. We have identified a mutation in nanos1 using a reverse genetics method and show that young female nanos mutants contain oocytes, but fail to maintain oocyte production. This progressive loss of fertility in homozygous females is not a phenotype that has been described previously in the zebrafish and underlines the value of a reverse genetics approach in this model system.  相似文献   

14.
Primordial germ cells (PGCs) are embryonic germ cell precursors. Although the developmental potency of PGCs is restricted to the germ lineage, PGCs can acquire pluripotency, as verified by the in vitro establishment of embryonic germ (EG) cells and the in vivo production of testicular teratomas. PGC-specific inactivation of PTEN, which is a lipid phosphatase antagonizing phosphoinositide-3 kinase (PI3K), enhances both EG cell production and testicular teratoma formation. Here, we analyzed the effect of the serine/threonine kinase AKT, one of the major downstream effectors of PI3K, on the developmental potency of PGCs. We used transgenic mice that expressed an AKT-MER fusion protein, the kinase activity of which could be regulated by the ligand of modified estrogen receptor (MER), 4-hydroxytamoxifen. We found that hyperactivation of AKT signaling in PGCs at the proliferative phase dramatically augmented the efficiency of EG cell establishment. Furthermore, AKT signaling activation substituted to some extent for the effects of bFGF, an essential growth factor for EG cell establishment. By contrast, AKT activation had no effect on germ cells that were in mitotic arrest or that began meiosis at a later embryonic stage. In the transgenic PGCs, AKT activation induced phosphorylation of GSK3, which inhibits its kinase activity; enhanced the stability and nuclear localization of MDM2; and suppressed p53 phosphorylation, which is required for its activation. The p53 deficiency, but not GSK3 inhibition, recapitulated the effects of AKT hyperactivation on EG cell derivation, suggesting that p53 is one of the crucial downstream targets of the PI3K/AKT signal and that GSK3 is not.  相似文献   

15.
Migratory pathways of PGCs to the gonad vary depending on the vertebrate species, yet the underlying regulatory mechanisms guiding PGCs are believed to be largely common. In teleost medaka embryo, PGC migration follows two major steps before colonizing in gonadal areas: (1) bilateral lineup in the trunk and (2) posterior drift of PGCs. kazura (kaz) and yanagi (yan) mutants of medaka isolated in mutagenesis screening were defective in the first and second steps, respectively. kazj2-15D was identified as a missense mutation in chemokine receptor gene cxcr4b expressed in PGCs. Embryonic injection of cxcr4b mRNA with vasa 3′ UTR rescued the PGC phenotype of kaz mutant, indicating a cell-autonomous function of cxcr4b in PGCs. yanj6-29C was identified as a nonsense mutation in the cxcr7/rdc1 gene encoding another chemokine receptor. cxcr7 transgene with genomic flanking sequences rescued the yan mutant phenotype efficiently at the G0 generation. cxcr7 was expressed in somites rather than PGCs. cxcr7-expressing somitic domain expanded posteriorly with its margin immediately anterior of posteriorly drifting PGCs, as if PGCs were thrusted toward the gonadal area. kaz and yan mutants are also defective in lateral line positioning, suggesting combined employment of these receptor systems in various cell migratory processes.  相似文献   

16.
Spermatogenesis in Drosophila is maintained by germ-line stem cells. These cells undergo self-renewing divisions and also generate daughter gonial cells, whose function is to amplify the germ cell pool. Gonial cells subsequently differentiate into spermatocytes that undergo meiosis and generate haploid gametes. To elucidate the circuitry that controls progression through spermatogenic stem cell lineages, we are identifying mutations that lead to either excess germ cells or germ cell loss. From a collection of male sterile mutants, we identified P-element-induced hypomorphic alleles of nop60B, a gene encoding a pseudouridine synthase. Although null mutations are lethal, our P element-induced alleles generate viable, but sterile flies, exhibiting severe testicular atrophy. Sterility is reversed by P-element excision, and the atrophy is rescued by a Nop60B transgene, confirming identity of the gene. Using cell-type-specific markers, we find that testicular atrophy is due to severe loss of germ cells, including stem cells, but much milder effects on the somatic cells, which are themselves maintained by a stem cell lineage. We show that Nop60B activity is required intrinsically for the maintenance of germ-line stem cells. The relationship of these phenotypes to the human syndrome Dyskeratosis congenita, caused by mutations in a Nop60B homolog, is discussed.  相似文献   

17.
Primordial germ cells (PGCs) are germ cell precursors that are committed to sperm or oocytes. Dramatic proliferation during PGC development determines the number of founder spermatogonia and oocytes. Although specified to a germ lineage, PGCs produce pluripotent embryonic germ (EG) cells in vitro and testicular teratomas in vivo. Wnt/beta-catenin signaling regulates pluripotency and differentiation in various stem cell systems, and dysregulation of this signaling causes various human cancers. Here, we examined the role of Wnt/beta-catenin signaling in PGC development. In normal PGC development, Wnt/beta-catenin signaling is suppressed by the GSK3beta-mediated active degradation of beta-catenin and the low expression of canonical Wnt molecules. The effects of aberrant activation of Wnt/beta-catenin signaling in PGCs were analyzed using mice carrying a deletion of the exon that encodes the GSK3beta phosphorylation sites in the beta-catenin locus. Despite the potential activity of Wnt/beta-catenin signaling in stem cell maintenance and carcinogenesis in various cell lineages, teratomas were not induced in the mice expressing the nuclear-localized beta-catenin in PGCs. Instead, the mutant mice showed germ cell deficiency caused by the delayed cell cycle progression of the proliferative phase PGCs. Our results show that the suppression of Wnt/beta-catenin signaling is a prerequisite for the normal development of PGCs.  相似文献   

18.
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.  相似文献   

19.
A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD?=?3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1(ter)/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders.  相似文献   

20.
Proliferating germ cells in Caenorhabditiselegans provide a useful model system for deciphering fundamental mechanisms underlying the balance between proliferation and differentiation. Using gene expression profiling, we identified approximately 200 genes upregulated in the proliferating germ cells of C. elegans. Functional characterization using RNA-mediated interference demonstrated that over forty of these factors are required for normal germline proliferation and development. Detailed analysis of two of these factors defined an important regulatory relationship controlling germ cell proliferation. We established that the kinase VRK-1 is required for normal germ cell proliferation, and that it acts in part to regulate CEP-1(p53) activity. Loss of cep-1 significantly rescued the proliferation defects of vrk-1 mutants. We suggest that VRK-1 prevents CEP-1 from triggering an inappropriate cell cycle arrest, thereby promoting germ cell proliferation. This finding reveals a previously unsuspected mechanism for negative regulation of p53 activity in germ cells to control proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号