首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
王利国  李玲 《植物学报》2003,20(3):354-362
植物与病原菌互作时,活性氧中间体(reactive oxygen intermediates,ROI)和一氧化氮(NO)参与了植物抗病性的建立。寄主与病原菌非亲合性互作产生二次氧爆发高峰,体内NO增加。许多氧化酶可以催化氧爆发产生ROI。ROI和NO通过氧化还原信号启动寄主细胞局部的过敏性坏死反应和全株系统获得性抗病性。  相似文献   

2.
植物氮素营养与病害发生关系研究进展   总被引:1,自引:0,他引:1  
氮素营养不仅影响植物的正常生长发育,还会影响植物的感病性或抗病性。该文主要综述了氮素营养及其代谢对植物病害发展的影响、诱导病原菌侵染的寄主氮营养信号和氮素营养对植物与病原菌互作相关基因表达的影响,尤其是氮素受限(饥饿)对病原菌基因的诱导表达、植物衰老基因和抗病基因的关系、植物衰老过程中防御基因的表达等国际研究的热点领域所取得的成果和进展,并讨论了有待深入研究的问题。  相似文献   

3.
植物抗病的信号转导途径   总被引:7,自引:0,他引:7  
董敏  刘进元 《生命科学》1998,10(5):227-228,209
植物在遭受不同病原菌入侵时会表现出不同的反应,若病原菌具有逃避寄主的识别并破坏寄主防御系统的能力则表现感病;若植物能及时识别病原菌并激活自身的防御体系,将表现出抗病性,而特异性的抗病性常常伴有过敏反应的产生。那么植物对病原菌的最初识别,识别后的信号转导以及抗病性过程究竟是怎样的呢?本文将对这一问题进行概述。  相似文献   

4.
植物抗病反应的信号传导网络   总被引:7,自引:0,他引:7  
植物由抗病基因介导的防卫过程存在一系列生理生化和分子生物学反应,这些反应从病原菌侵染点开始的超敏反应(HR)并延伸到远处组织的系统抗性或获得性抗性(SAR),受制于一种信号传导网络的调控。这个信号系统由抗病蛋白和病原菌非毒性蛋白在一种配体-受体的互作模式下激发,并由信号分子H2O2,NO和系统信号分子SA,JA和乙烯和通过关键调控基因传递和放大,最终诱导一系列防卫反应基因的表达和代谢的变化而产生抗性。植物防卫信号的产生有类似于动物免疫系统因子的介导,并可由非寄主病原菌或诱导子诱发。这些信号途径所产生的广谱抗性为植物抗病基因工程的应用奠定了基础。  相似文献   

5.
植物抗病反应的信号传导网络   总被引:4,自引:0,他引:4  
植物由抗病基因介导的防卫过程存在一系列生理生化和分子生物学反应,这些反应从病原菌侵染点开始的超敏反应(HR)并延伸到远处组织的系统抗性或获得性抗性(SAR),受制于一种信号传导网络的调控,这个信号系统由抗病蛋白和病原菌非毒性蛋白在一种配体-受体的互作模式下激发,并由信号分子H2O2,NO和系统信号分子SA,JA和乙烯和通过关键调控基因传递和放大,最终诱导一系列防卫反应基因的表达和代谢的变化而产生抗性。植物防卫信号的产生有类似于动物免疫系统因子的介导,并可由非寄主病原菌或诱导子诱发,这些信号途径所产生的广谱抗性为植物抗病基因工程的应用奠定了基础。  相似文献   

6.
活性氧(reactive oxygen species,ROS)是植物体代谢所产生的小分子化合物,既是生长发育和防御途径的关键调节因子,又是需氧代谢的有毒副产物。植物细胞的生理过程受一个被活性氧调节的氧化还原网状途径的调控,本文从植物体内ROS产生的部位与时空特异性、ROS信号与NO和Ca2+波信号的互作等方面综述了ROS信号对植物抗性的调控作用研究进展。  相似文献   

7.
微生物与植物之间存在错综复杂的双向交流和串扰,植物与病原微生物互作直接影响寄主植物的生存状况,而植物和益生微生物互作则有利于宿主的生长和健康,共生微生物也会从中受益。不管是病原微生物还是有益微生物进入植物体内,植物miRNA都会迅速做出响应,同时微生物也可以产生miRNA样RNA(miRNA-likeRNA,milRNA)影响植物健康,可见miRNA(或milRNA)是植物与微生物互作过程中迅速响应的重要媒介分子,其内在机制研究近年来取得了许多进展。文中概述了植物-病原微生物、植物-益生微生物互作中miRNA的调控作用,重点阐述了植物miRNA在植物-病原微生物互作过程中对寄主植物抗病性的调控作用和植物-益生微生物互作过程中对宿主植物生长发育及代谢的调控,以及真菌milRNA对寄主植物的跨界调控作用。  相似文献   

8.
马铃薯块茎切片- 软腐病菌亲和互作过程中, 不同强度的亲和互作中活性氧的释放有其不同的特点。在强亲和互作中的24 小时内,无明显的活性氧释放。但在弱亲和互作中,互作8 小时后,即有明显的活性氧的释放,20 小时达到高峰,并且这种活性氧的释放提高寄主的抗病性。试验显示马铃薯块茎切片与软腐病菌的亲和互作诱导寄主抗氰交替途径的运行,SHAM 处理降低亲和互作过程中寄主的感病性, 同时SHAM 处理也促进亲和互作中寄主活性氧释放高峰的出现, 表明抗氰交替途径的运行可通过抑制亲和互作中寄主活性氧的产生而促进寄主的感病性。从而证明了一种新的寄主植物抗感病反应机制  相似文献   

9.
植物与病原菌互作的蛋白质组学研究进展   总被引:6,自引:0,他引:6  
深入认识植物与病原菌的识别方式、亲和性或非亲和性的互作模式,对于揭示植物-病原菌互作机制研究具有重要意义.利用蛋白质组学方法研究病原菌侵染植物过程,分析相关的基因和蛋白,有助于从分子水平上探究植物-病原菌相互作用机制.本文概述了植物-病原菌的互作机制,系统介绍了差异蛋白质组学分析方法在植物-病原真菌、植物-病原细菌两类互作系统中的应用,分析了植物与病原菌互作过程中可能涉及的差异表达功能蛋白,并对当前蛋白质组学技术在植物与病原菌互作研究中存在的诸多问题进行了探讨.  相似文献   

10.
大豆疫霉引起的大豆疫病是大豆生产上的毁灭性病害。深入了解大豆疫霉与寄主在分子层面的互作机制是解析病原菌致病机理、针对性地制定防治措施的必要前提。目前研究表明,植物通过两个层面的识别机制来启动防卫反应,而能否正确识别"非我"分子则是植物开启免疫系统的关键。而对于病原菌,则采用多种分子策略来极力逃避寄主的识别机制,分泌效应分子协同抑制寄主免疫反应。本文综述了一系列大豆抗病基因介导的小种专化抗性丧失的原因,以及大豆疫霉效应分子逃避和破坏寄主免疫反应的分子策略,并讨论了基于这些分子互作机制应用于筛选新型抗病资源和精确育种的可能性。  相似文献   

11.
Recent experiments indicate that nitric oxide (NO) plays a pivotal role in disease resistance and several other physiological processes in plants. However, most of the current information about the function of NO in plants is based on pharmacological studies, and additional approaches are therefore required to ascertain the role of NO as an important signaling molecule in plants. We have expressed a bacterial nitric oxide dioxygenase (NOD) in Arabidopsis plants and/or avirulent Pseudomonas syringae pv tomato to study incompatible plant-pathogen interactions impaired in NO signaling. NOD expression in transgenic Arabidopsis resulted in decreased NO levels in planta and attenuated a pathogen-induced NO burst. Moreover, NOD expression in plant cells had very similar effects on plant defenses compared to NOD expression in avirulent Pseudomonas. The defense responses most affected by NO reduction during the incompatible interaction were decreased H(2)O(2) levels during the oxidative burst and a blockage of Phe ammonia lyase expression, the key enzyme in the general phenylpropanoid pathway. Expression of the NOD furthermore blocked UV light-induced Phe ammonia lyase and chalcone synthase gene expression, indicating a general signaling function of NO in the activation of the phenylpropanoid pathway. NO possibly functions in incompatible plant-pathogen interactions by inhibiting the plant antioxidative machinery, and thereby ensuring locally prolonged H(2)O(2) levels. Additionally, albeit to a lesser extent, we observed decreases in salicylic acid production, a diminished development of hypersensitive cell death, and a delay in pathogenesis-related protein 1 expression during these NO-deficient plant-pathogen interactions. Therefore, this genetic approach confirms that NO is an important regulatory component in the signaling network of plant defense responses.  相似文献   

12.
Nitric oxide has attracted considerable interest from plant pathologists due its established role in regulating mammalian anti-microbial defences, particularly via programmed cell death (PCD). Although NO plays a major role in plant PCD elicited in response to certain types of pathogenic challenge, the race-specific hypersensitive response (HR), it is now evident that NO also acts in the regulation of non-specific, papilla-based resistance to penetration by plant cells that survive attack and, possibly, in systemic acquired resistance. Equally, the potential roles of NO signalling/scavenging within the pathogen are being recognized. This review will consider key defensive roles played by NO in living cells during plant-pathogen interactions, as well as in those undergoing PCD.  相似文献   

13.
Nitric oxide function and signalling in plant disease resistance   总被引:2,自引:0,他引:2  
Nitric oxide (NO) is one of only a handful of gaseous signalling molecules. Its discovery as the endothelium-derived relaxing factor (EDRF) by Ignarro revolutionized how NO and cognate reactive nitrogen intermediates, which were previously considered to be toxic molecules, are viewed. NO is now emerging as a key signalling molecule in plants, where it orchestrates a plethora of cellular activities associated with growth, development, and environmental interactions. Prominent among these is its function in plant hypersensitive cell death and disease resistance. While a number of sources for NO biosynthesis have been proposed, robust and biologically relevant routes for NO production largely remain to be defined. To elaborate cell death during an incompatible plant-pathogen interaction NO functions in combination with reactive oxygen intermediates. Furthermore, NO has been shown to regulate the activity of metacaspases, evolutionary conserved proteases that may be intimately associated with pathogen-triggered cell death. NO is also thought to function in multiple modes of plant disease resistance by regulating, through S-nitrosylation, multiple nodes of the salicylic acid (SA) signalling pathway. These findings underscore the key role of NO in plant-pathogen interactions.  相似文献   

14.
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant–pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant–pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms.  相似文献   

15.
Nitric oxide (NO) has recently gained interest as a major signaling molecule during plant development and response to environmental cues. Its role is particularly crucial for plant-pathogen interactions, during which it participates in the control of plant defense response and resistance. Indication for the presence of NO during symbiotic interactions has also been reported. Here, we defined when and where NO is produced during Medicago truncatula-Sinorhizobium meliloti symbiosis. Using the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate, NO production was detected by confocal microscopy in functional nodules. NO production was localized in the bacteroid-containing cells of the nodule fixation zone. The infection of Medicago roots with bacterial strains impaired in nitrogenase or nitrite reductase activities lead to the formation of nodules with an unaffected NO level, indicating that neither nitrogen fixation nor denitrification pathways are required for NO production. On the other hand, the NO synthase inhibitor N-methyl-L-arginine impaired NO detection, suggesting that a NO synthase may participate to NO production in nodules. These data indicate that a NO production occurs in functional nodules. The location of such a production in fully metabolically active cells raises the hypothesis of a new function for NO during this interaction unrelated to defense and cell-death activation.  相似文献   

16.
Reactive oxygen intermediates (ROI) are closely related to defence reactions of plants against pathogens. A prominent role in the production of ROI has been attributed to the plant respiratory burst oxidase homologues (RBOH) of the human phagocyte GP91(phox). A barley RBOH, which encodes a putative superoxide (O2*-)) producing NADPH oxidase, is described here. Histochemical analysis of the barley-Blumeria graminis f. sp. hordei (Bgh) interaction showed that O(2*-) is produced locally at the site of penetration. In contrast, hydrogen peroxide (H2O2) is produced in non-penetrated cell wall appositions. A barley RBOHA cDNA was isolated and a minor induction of expression of RBOHA was observed during the interactions of barley with Bgh. Transient RNA interference-mediated gene silencing of HvRBOHA during the penetration process of Bgh led to an increase of basal penetration resistance. The results support a potential role of HvRBOHA in cellular accessibility to Blumeria graminis.  相似文献   

17.
Trienoic fatty acids (TAs) are the major polyunsaturated fatty acid species in the membrane lipids in plant cells. TAs are crucial for the adaptation to abiotic stresses, especially low- or high-temperature stress. We show that TAs in chloroplast membrane lipids are involved in defense responses against avirulent bacterial pathogens. Avirulent pathogen invasion of plants induces a transient production of reactive oxygen intermediates (ROI), programmed cell death and subsequent disease resistance. The Arabidopsis fad7fad8 mutation, which prevents the synthesis of TAs in chloroplast lipids, caused the reduction in ROI accumulation in leaves inoculated with Pseudomonas syringae pv. tomato DC3000 (avrRpm1). Linolenic acid, the most abundant TA, activated the NADPH oxidase that is responsible for ROI generation. TAs were transferred from chloroplast lipids to extrachloroplast lipids coincident with ROI accumulation after inoculation with Pst DC3000 (avrRpm1). Furthermore, the fad7fad8 mutant exhibited reduced cell death and was compromised in its resistance to several avirulent P. syringae strains. These results suggest that TAs derived from chloroplast lipids play an important role in the regulation of plant defense responses.  相似文献   

18.
Nitric oxide signalling functions in plant-pathogen interactions   总被引:1,自引:0,他引:1  
Nitric oxide (NO) is a highly reactive molecule that rapidly diffuses and permeates cell membranes. During the last few years NO has been detected in several plant species, and the increasing number of reports on its function in plants have implicated NO as a key molecular signal that participates in the regulation of several physiological processes; in particular, it has a significant role in plant resistance to pathogens by triggering resistance-associated cell death and by contributing to the local and systemic induction of defence genes. NO stimulates signal transduction pathways through protein kinases, cytosolic Ca2+ mobilization and protein modification (i.e. nitrosylation and nitration). In this review we will examine the synthesis of NO, its effects, functions and signalling giving rise to the hypersensitive response and systemic acquired resistance during plant-pathogen interactions.  相似文献   

19.
Melatonin is widely involved in plant growth and stress responses as a master regulator. Melatonin treatment alters the levels of endogenous nitric oxide (NO) and NO affects endogenous melatonin content. Melatonin and NO may induce various plant physiological behavior through interaction mechanism. However, the interactions between melatonin and NO in plants are largely unknown. The review presented the metabolism of endogenous melatonin and NO and their relationship in plants. The interactions between melatonin and NO in plant growth and development and responses to environmental stress were summarized. The molecular mechanisms of interaction between melatonin and NO in plants were also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号