首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca2+]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3.  相似文献   

2.
In this study an attempt was made to elucidate the possible mechanism of the brain microsomal (Na+-K+)ATPase inhibition based on the assumption that glycoprotein part of the enzyme is exposed on the outer membrane surface. In our experiments the modification with concanavalin A of sugar end groups exposed by neuraminidase treatment resulted in a significant decrease of the brain (Na+-K+)ATPase activity. The percentage of the enzyme inhibition by concanavalin A binding to the neuraminidase-treated preparation corresponds to the amount of liberated sialic acids. The modification of the glycoprotein part of the brain (Na+-K+)ATPase complex by neuraminidase and concanavalin A treatments did not affect K+-nitrophenylphosphatase activity.  相似文献   

3.
1. The Na+-plus-K+-stimulated adenosine triphosphatase [(Na+,K+)-ATPase] of microsomal preparations from ox brain was inactivated or diminished in activity by exposure to 2–8m-urea. Similar concentrations of urea diminished the turbidity of the suspensions. 2. Low concentrations (about 2·5mm) of NaATP with the urea gave partial or complete protection of the ATPase, without altering the concomitant change in turbidity. Some protection of the (Na+,K+)-ATPase was afforded by tris ATP, but the greatest protection was found with NaATP and in its presence the change in (Na+,K+)-ATPase with 3m-urea included a phase in which activity was enhanced by 40%. 3. The protective effect was specific to NaATP: KATP, NaADP, NaAMP and sodium pyrophosphate were without protective effect and in some cases they augmented the action of urea. 4. The turbidity of cerebral microsomal suspensions was diminished also by ultrasonic irradiation; NaATP did not alter this change. After ultrasonic treatment up to 55% of the protein and of the ATPase activity were no longer deposited by centrifugal forces of 4·5×106g-min. 5. Ultrasonic treatment and centrifugation could be carried out with little or no loss of ATPase and ammonium sulphate flocculation of the supernatant then afforded in the first material precipitated a three- to five-fold enrichment of (Na+,K+)-ATPase activity. 6. Sodium borohydride and dimethyl sulphoxide also diminished the turbidity of the microsomal fraction but enrichment of the ATPase was not effected by these reagents; ten other compounds were without action on the ATPase. 7. Acetyl phosphate was hydrolysed by the microsomal preparation and this activity was increased by added K+. Acetyl-phosphatase activity persisted in the ultrasonically treated and ammonium sulphate-fractionated preparations, which were more exacting in their requirements for K+. 8. The findings are discussed in relation to the mechanism of the (Na+,K+)-ATPase.  相似文献   

4.
The present study sought to evaluate the effect of a newly synthesized selenium compound, dicholesteroyl diselenide (DCDS) and diphenyl diselenide (DPDS) on the activities of delta-aminolevulinate dehydratase and Na+/K+-ATPase in the rat brain. The glutathione peroxidase mimetic activity of the two compounds as well as their ability to oxidize mono- and di- thiols were also evaluated. The antioxidant effects were tested by measuring the ability of the compounds to inhibit the formation of thiobarbituric acid reactive species and also their ability to inhibit the formation of protein carbonyls. The results show that DPDS exhibited a higher glutathione peroxidase mimetic activity as well as increased ability to oxidize di-thiols than DCDS. In addition, while DPDS inhibited the formation of thiobarbituric acid reactive species and protein carbonyls, DCDS exhibited a prooxidant effect in all the concentration range (20–167 μM) tested. Also the activities of cerebral delta-aminolevulinate dehydratase and Na+/K+ ATPase were significantly inhibited by DPDS but not by DCDS. In addition, the present results suggested that the inhibition of Na+/K+ ATPase by organodiselenides, possibly involves the modification of the thiol group at the ATP binding site of the enzyme. In conclusion, the results of the present investigation indicated that the non-selenium moiety of the organochalcogens can have a profound effect on their antioxidant activity and also in their reactivity towards SH groups from low-molecular weight molecules and from brain proteins.  相似文献   

5.
R B Koch  T I Gilliland 《Life sciences》1977,20(6):1051-1061
Na+-K+ ATPase activity from nerve ending particle (NEP) fractions of dog olfactory tissue homogenates showed different patterns of response to odorants. Similar turbinal groupings were removed from the right and left sides of the septum in the nasal cavity and NEP preparations were tested with eight different odor compounds, including 2-keto alkane homologs and the optical isomers d- and l-carvone. Odorant stimulation of Na+-K+ ATPase activity from paired turbinal groupings did not show bilateral symmetry. Different patterns of stimulation were observed for each turbinal grouping and for each odorant. A stimulation of over 200% was observed in one preparation in response to 2-nonanone.A study of the response of Na+-K+ ATPase activity from individual turbinals showed that the enzyme in each turbinal had a different response pattern to six different odorants. Inhibitory and stimulatory responses were observed for the individual turbinal NEP preparations. These results support the proposal that odor sensing initiation may occur through odorant perturbation of the Na+-K+ ATPase activity.  相似文献   

6.
The effects of neonatal hypothyroidism on electrolyte contents and the Na+ and K+ activated ATPase system was studied in the cerebral cortex and cerebellum of the developing rat. Neonatal hypothyroidism increased Na+ and CI? contents and decreased K+ and Mg2+ contents in both brain areas. Hypothyroidism also resulted in a decrease in the specific activity of the Na-K ATPase extracted by deoxycholate treatment from brain homogenate as well as in the specific activity of this enzyme in the heavy microsomal fraction. The decrease in Mg2+ content and ATPase activity is discussed in relation to the changes occurring in Na+ and K+. Both enzymic and ionic changes may underlie the biochemical and physiological abnormalities observed when the brain is deprived of thyroxine at critical stages of its development.  相似文献   

7.
8.
The adenosine triphosphatase (ATPase) system in worker honey-bee brains showed an increased activity of 57 per cent in Na+K+ATPase and 63 per cent in Mg2+ATPase from adult emergence to 7 days post-emergence. Mg2+ATPase activity remained about the same throughout the remainder of adult life, while Na+K+ATPase remained the same until the sixth week, when a decline occurred. The percentage mortality of the bees exceeded 90 per cent at the time of decline of Na+K+ATPase. The in vitro inhibition of Mg2+ATPase and Na+K+ATPase by 10 μM DDT was between 40 and 50 per cent and about 20 per cent, respectively. A somewhat greater sensitivity to DDT was determined in brains of older honey-bees.  相似文献   

9.
The effects of vanadate, molybdate, and azide on ATP phosphohydrolase (ATPase) and acid phosphatase activities of plasma membrane, mitochondrial, and soluble supernatant fractions from corn (Zea mays L. WF9 × MO17) roots were investigated. Azide (0.1-10 millimolar) was a selective inhibitor of pH 9.0-ATPase activity of the mitochondrial fraction, while molybdate (0.01-1.0 millimolar) was a relatively selective inhibitor of acid phosphatase activity in the supernatant fraction. The pH 6.4-ATPase activity of the plasma membrane fraction was inhibited by vanadate (10-500 micromolar), but vanadate, at similar concentrations, also inhibited acid phosphatase activity. This result was confirmed for oat (Avena sativa L.) root and coleoptile tissues. While vanadate does not appear to be a selective inhibitor, it can be used in combination with molybdate and azide to distinguish the plasma membrane ATPase from mitochondrial ATPase or supernatant acid phosphatase.

Vanadate appeared to be a noncompetitive inhibitor of the plasma membrane ATPase, and its effectiveness was increased by K+. K+-stimulated ATPase activity was inhibited by 50% at about 21 micromolar vanadate. The rate of K+ transport in excised corn root segments was inhibited by 66% by 500 micromolar vanadate.

  相似文献   

10.
The Mg2+ dependent and Na+K+-activated ATPase activities of microsomal preparations from the rectum of Locusta migratoria were both stimulated, to varying extents, by crude extracts of the corpora cardiaca of this species. Mg2+ ATPase activity increased by approximately 549% whereas the hormonal stimulation of Na+K+-activated ATPase depended upon the concentration of sodium and potassium ions. At 100 mM Na+ and 20 mM K+, conditions which approximate to optimum for this enzyme system, Na+K+-activated ATPase activity increased by about 14%. At sub-optimum concentrations of these ions, i.e. 50 and 5 mM Na+ and K+ respectively, the increase in Na+K+-activated ATPase activity was about 205%. Ouabain at a concentration of 10?3 M completely abolished this stimulated activity and was consistently effective in partially reducing the stimulation of Mg2+ ATPase activity by corpora cardiaca extracts.  相似文献   

11.
Low concentrations (< 10?7 M) of ouabain stimulate the activity of Na+, K+-ATPase in whole homogenates of rat brain. The magnitude of this stimulation varies from 5 to 70%. The concentrations of ouabain which induces maximal stimulation is also highly variable and ranges between 10?9 to 10?7 M. The ouabain stimulation disappears following 1:50 dilution and 2 h preincubation or freezing and thawing of the membranes or their treatment with deoxycholate. “Aging” of a preparation of ATPase also results in loss of its ability to be stimulated by ouabain but ouabain inhibition is preserved. No stimulation of enzyme activity by ouabain is observed in rat brain microsomal fraction. The β-adrenergic blocker propranolol does not inhibit the ouabain induced stimulation of ATPase activity. It is suggested that the stimulation of Na+, K+-ATPase activity by low concentrations of cardiac glycosides if a result of either the displacement of an endogenous ouabain-like compound from the enzyme or an indirect effect by changing membrane surrounding environment of the Na+, K+-ATPase.  相似文献   

12.
Lysophosphatidylcholine at concentrations of 30 micromolar stimulated the rate of MgATP-dependent H+-accumulation in oat (Avena sativa L. cv Rhiannon) root plasma membrane vesicles about 85% while the passive permeability of H+ was unchanged. Activation was dependent on chain length, degree of saturation, and head group of the lysophospholipid. A H+-ATPase assay was developed that allowed the simultaneous measurement of proton pumping and ATPase activity in the same sample. ATP hydrolysis was also stimulated by lysophospholipids and showed the same lipid specificity, but stimulation was only about 25% at 30 micromolar. At higher concentrations of lysophosphatidylcholine the ATPase activity in a latency-free system could be stimulated about 150%. The enzymic properties of proton pumping and ATP hydrolysis were otherwise identical with respect to vanadate sensitivity, Km for ATP and pH optimum. The stimulatory effect of lysophospholipids suggests that these compounds could be part of the regulatory system for plant plasma membrane H+-ATPase activity in vivo.  相似文献   

13.
We have previously presented evidence for the existence of a brain soluble factor which mediates the stimulation of synaptosomal ATPases by catecholamines. The stimulation of synaptosomal ATPases by dopamine plus brain soluble fraction was not modified if the soluble fraction was heated for 5 min at 95°C. One day after preparation, the soluble factor inhibited the Na+, K+-ATPase, but not the Mg2+-ATPase activity, and subsequent addition of noradrenaline stimulated the ATPases activities. The inhibitory effect of a 24 h soluble fraction disappeared if the soluble fraction was dialyzed; in this case, noradrenaline did not activate the enzyme activities. Gel filtration in Sephadex G-50 permitted separating a subfraction which inhibited ATPase activity (peak II) from another which stimulated ATPase activity (peak I). Peak I stimulated both Na+, K+, and Mg2+ ATPases. Peak II inhibited only Na+, K+-ATPase, and when stored acidified, it mediated ATPases stimulation by noradrenaline.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

14.
The sensitivity of catfish, Ictalurus punctatus, brain ATPase activities to cyclodiene compounds was investigated. The ATPase system showed differences in sensitivity to aldrin, dieldrin and photodieldrin. However, aldrin-transdiol (a more terminal metabolite of dieldrin and reported as a more potent neurotoxin than dieldrin) had no effect on any ATPase activity from fish brain homogenates. Mitochondrial Mg2+ ATPase was the most sensitive ATPase to the cyclodiene compounds tested. The possibility that the neurotoxic effects of these compounds is a secondary response resulting from mitochondrial Mg2+ ATPase inhibition is discussed.  相似文献   

15.
The plasma membrane (PM) H+ ATPase is involved in the plant response to nutrient deficiency. However, adaptation of this enzyme in monocotyledon plants to phosphorus (P) deficiency lacks direct evidence. In this study, we detected that P deficient roots of rice (Oryza Sativa L.) could acidify the rhizosphere. We further isolated the PM from rice roots and analyzed the activity of PM H+ ATPase. In vitro, P deficient rice roots showed about 30% higher activity of PM H+ ATPase than the P sufficient roots at assay of pH 6.0. The P deficiency resulted in a decrease of the substrate affinity value (K m ) of PM H+ ATPase. The proton pumping activity of membrane vesicles from the P deficient roots was about 70% higher than that from P sufficient roots. Western blotting analysis indicated that higher activity of PM H+ ATPase in P deficient roots was related to a slightly increase of PM H+ ATPase protein abundance in comparison with that in P sufficient roots. Taken together, our results demonstrate that the P deficiency enhanced activities of both PM H+-ATPase and H+ pump, which contributed to the rhizosphere acidification in rice roots.  相似文献   

16.
Abstract— A comparison was made between K+-Mg2+ activated p-nitrophenyl phosphatase and Na+-K+-Mg2+ activated adenosine triphosphatase with a solubilized enzyme preparation from a membrane fraction of cerebral cortex. The NPPase showed activity even in the absence of phospholipid, whereas the ATPase required the lipid for its activity. More varied types of phospholipids were effective in activating the NPPase than the ATPase, and with each phospholipid the extent and the pattern of the NPPase activation differed from that of the ATPase. By deoxycholate treatment the pH optimum of the NPPase was shifted independently from the pH optimum shift of the ATPase. The specific activity ratio of the NPPase to the ATPase was not constant during purification. These two enzymes were, however, not separable with ammonium sulphate fractionation, and their thermo-lability was identical regardless of the presence of phospholipid. The results suggested two possibilities: (1) the NPPase is a separate enzyme entity from the ATPase; (2) although the NPPase is a part of the ATPase system, the mechanism of action of lipids on the former part differs from that on the rest of the system.  相似文献   

17.
Abstract— Differential and sucrose-density-gradient centrifugation techniques were used for studies on the separation of subcellular particles from rabbit brain and olfactory tissue. Comparisons were made among various fractions from the two types of tissue. These comparisons included protein concentration and enzyme activities of the individual fractions as well as their distribution in subfractions from density gradient separations. In tissue whole homogenates, the percentage of total ATPase activity as ouabain sensitive Na+-K+ ATPase activity was about 4 times greater in brain cortex (63 per cent) than in olfactory tissue (17 per cent). Cytochrome oxidase and Na+-K+ ATPase activities were used to indicate the presence and the concentration of mitochondria and of the plasma membranes. A fraction with properties similar to the mitochondria plus nerve ending fraction from brain homogenates (fraction B) was obtained from olfactory tissue. Nerve ending concentration subfractions (B2) were prepared from the B primary fractions. Plasma membrane subfractions were obtained by osmotic shock treatment of B2, In the fraction of plasma membrane from olfactory tissue (E2), 56 per cent of the total ATPase activity was Na+-K+ ATPase activity. In E2 from brain 71 per cent was Na+-K+ ATPase activity. Deoxycholate (DOC)-treated fractions containing nerve endings from brain preparations showed much greater increase in cytochrome oxidase activity than did similar fractions from olfactory tissue. DOC treatment increased the NADH cytochrome c reductase activity of all fractions and subfractions from brain, while it decreased activity in all but one fraction from olfactory tissue. DOC treatment decreased both the Mg2+ and Na+-K+ ATPase activities in both types of tissue. Electron photomicrographs of olfactory B2, B3, E2 and E3 show clear morphological differences among these subfractions. The presence of possible cilia and basal bodies on vesicles in B2 gives morphological evidence for the presence of terminal swellings in this subtraction in agreement with enzyme marker activity results.  相似文献   

18.
Potassium stimulation of the plasmalemma (Zea mays L. var Mona) was studied by using a constant ionic strength to prevent indirect stimulation by the electrostatic effect of K+ salts. The transmembrane electrochemical H+ gradient was eliminated by using gramicidin. In these conditions, K+ stimulation was attributable to a direct effect of the cation on plasmalemma proteins. We used both native vesicles isolated on a sucrose cushion, and solubilized and purified ATPase from phase-partitioned plasmalemma, according to the method of T. Nagao, W. Sasakawa, and T. Sugiyama ([1987] Plant Cell Physiol 28: 1181-1186). The purified enzyme had a high specific activity (15 micromoles per minute per milligram protein), but was only about 20% stimulated by K+. In both preparations, potassium (in the range around 1 millimolar) specifically decreased two-fold the vanadate inhibition constant, and increased the maximum rate of ATP hydrolysis. In plasmalemma vesicles, the Eadie-Scatchard graph of the K+-dependent ATPase activity as a function of K+ concentration was linear only at constant ionic strength. The purified ATPase preparation appeared as two closely spaced bands in the 100 kilodalton region with isoelectric point about 6.5. Nevertheless, this biochemical heterogeneity seems unlikely to be related to K+ stimulation, since K+ modified neither the pH optimum of the activity (pH 6.5) nor the monophasic kinetics of the vanadate inhibition, in both native plasmalemma and purified enzyme preparation.  相似文献   

19.
Binding of [14C]ethaerynic acid [EA]at concentrations of EA from 10?4m to 10?2m to a membrane preparation containing Na+,K+-ATPase activity in vitro occurred in a nonsaturable manner; binding was stimulated by Na+ or K+, but was not affected by Mg2+ and/or ATP. [14C]EA significantly bound to a microsomal preparation with low Na+,K+-ATPase activity as well as to a heat-denatured enzyme; this binding reaction was not stimulated by Na+. These observations suggest that EA binds non-specifically or to nonspecific sites on membrane preparations. Nonselective binding of [14C]EA to subcellular particles after fractionation of slices also suggested the presence of nonspecific EA binding sites in vivo. In vitro [3H]ouabain binding to medullary and cortical Na+,K+-ATPase preparations was partially reduced by pretreatment with EA. On the other hand, [14C]EA binding to Na+,K+-ATPase was not affected by pretreatment of the preparation with ouabain (10?6m to 5 × 10?4m). EA reduced the sensitivity of [3H]ouabain binding to the enzyme preparation to Na4 and K+.EA was infused (0.1, 1.0, and 10 mg/min) into one renal artery of hydropenic dogs. A prompt natriuresis in the infused kidney occurred. Similar changes were observed in the contralateral kidney 20 min after starting the infusion. Both kidneys were removed 30 min after the beginning of the infusion, and Na+,K+-ATPase was isolated from the cortex and the medulla. Enzyme activity from cortex and medulla of either kidney was not significantly different from enzyme activity from cortex and medulla of control, uninfused dogs, regardless of dose of EA or method of enzyme isolation. Furthermore, in vitro binding of [3H]ouabain to Na+,K+-ATPase membrane preparations from cortex and medulla was the same for experimental and control kidneys. In vitro incubation of 2 × 10?3m EA with a membrane preparation caused the same inhibition of ATPase activity when the enzyme was isolated either from control or EA-infused dogs. The inhibition could not be reversed by recentrifugation or rehomogenization of the enzyme. Our results do not support the concept that Na+,K+-ATPase is a pharmacological receptor for ethacrynic acid.  相似文献   

20.
The occurrence, localization and response to environmental salinity changes of Na+-K+ATPase activity were studied in each of the individual gills 4-8 of the euryhaline crab Cyrtograpsus angulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Na+-K+ATPase activity appeared to be differentially sensitive to environmental salinity among gills. Upon an abrupt change to low salinity, a differential response of Na+-K+ATPase activity occurred in each individual gill which could suggest a differential role of this enzyme in ion transport process in the different gills of C. angulatus. With the exception of gill 8, a short-term increase of Na+-K+ATPase specific activity was observed in posterior gills, which is similar to adaptative variations of this activity described in other euryhaline crabs. However, and conversely to that described in other hyperregulating crabs, the highest increase of activity occurred in anterior gills 4 by 1 day after the change to dilute media which could suggest also a role for these gills in ion transport processes in C. angulatus. The fact that variations of Na+-K+ATPase activity in anterior and posterior gills were concomitant with the transition to hyperregulation indicate that this enzyme could be a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab. The results suggest a differential participation of branchial Na+-K+ATPase activity in ionoregulatory mechanisms of C. angulatus. The possible existence of functional differences as well as distinct regulation mechanisms operating in individual gills is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号