首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The periostin (POSTN) and platelet-derived growth factor receptor-like (PDGFRL) genes are implicated in regulation of hen ovarian development. In the present study, these genes were explored as possible molecular markers associated with egg production, egg weight and body weight in Chinese Dagu hens. Samples were analyzed using the PCR-single strand conformation polymorphism (PCR-SSCP) method, followed by sequencing analysis, and three novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/T transversion at base position 2727 in intron 2 of POSTN gene was found to be polymorphic and named SNP A2727T; and two transitions, G/A at position 6761 and A/G at base 6839 in exon 2 of PDGFRL gene were detected and named SNPs G6761A and A6839G, respectively. For the SNP A2727T, a total of 360 Dagu hens were classified as AA and AB genotypes, allele A was found present at a higher frequency. Moreover, the AA genotype was significantly correlated with higher hen-housed egg production (HHEP) at 43, 57, and 66 weeks (wks) of age and with a higher egg weight (EW) at 30 wks (P < 0.05). For the two linked SNPs (G6761A and A6839G) in the PDGFRL fragment, the hens were typed into TT, TC and CC genotypes, with the T allele shown to be dominant. The TT genotype was correlated with higher HHEP at 57 and 66 wks of age; genotype CC associated with the highest body weight and EW at 30 and 43 wks (P < 0.05), while it was correlated with the lowest HHEP at 57 and 66 wks of age (P < 0.05). Furthermore, five haplotypes were reconstructed based on these SNPs, with the AATT haplotype associated with the highest HHEP at 43 to 66 wks of age and higher EW at 30 wks (P < 0.05). Collectively, these SNPs identified in this study might be used as a potential molecular marker favorable to genetic improvement of egg productivity in chicken breeding.  相似文献   

2.
3.
4.
Genetic improvement is important for the poultry industry, contributing to increased efficiency of meat production and quality. Because breast muscle is the most valuable part of the chicken carcass, knowledge of polymorphisms influencing this trait can help breeding programs. Therefore, the complete genome of 18 chickens from two different experimental lines (broiler and layer) from EMBRAPA was sequenced, and SNPs and INDELs were detected in a QTL region for breast muscle deposition on chicken chromosome 2 between microsatellite markers MCW0185 and MCW0264 (105 849–112 649 kb). Initially, 94 674 unique SNPs and 10 448 unique INDELs were identified in the target region. After quality filtration, 77% of the SNPs (85 765) and 60% of the INDELs (7828) were retained. The studied region contains 66 genes, and functional annotation of the filtered variants identified 517 SNPs and three INDELs in exonic regions. Of these, 357 SNPs were classified as synonymous, 153 as non‐synonymous, three as stopgain, four INDELs as frameshift and three INDELs as non‐frameshift. These exonic mutations were identified in 37 of the 66 genes from the target region, three of which are related to muscle development (DTNA, RB1CC1 and MOS). Fifteen non‐tolerated SNPs were detected in several genes (MEP1B, PRKDC, NSMAF, TRAPPC8, SDR16C5, CHD7, ST18 and RB1CC1). These loss‐of‐function and exonic variants present in genes related to muscle development can be considered candidate variants for further studies in chickens. Further association studies should be performed with these candidate mutations as should validation in commercial populations to allow a better explanation of QTL effects.  相似文献   

5.
Grapevine rupestris stem pitting‐associated virus (GRSPaV) is a member of the genus Foveavirus within the new family Betaflexiviridae. GRSPaV is distributed among grapevines worldwide and is implicated in the disease rupestris stem pitting (RSP) of the rugose wood complex and two other disorders. GRSPaV is composed of a wide range of sequence variants, and so far, the complete genomes of five sequence variants have been sequenced. Quick and reliable detection of different GRSPaV variants is a critical step in the elimination and control of GRSPaV. Previously, primers designed from various genomic regions have been used in RT‐PCR for the detection of GRSPaV variants. The efficiency of RT‐PCR varied widely depending on the spectrum of the primers that were used. In this study, we designed a pair of degenerate primers based on the consensus sequence of the genomic region encoding the highly conserved RNA‐dependent RNA polymerase domain from five reference isolates of GRSPaV for which the genome sequence are available. We demonstrate that this set of primers is comparable, if not superior, to the broad‐spectrum primers RSP13&14 in detecting multiple GRSPaV variants. Using these degenerate primers, we identified two new and distinct sequence variants. The 3′ terminal genomic region of one of the new variants, GRSPaV‐ML, spanning the 3′ part of ORF1, through the entire open reading frames 2–4, and the 5′ region of ORF5 were sequenced. Sequence comparison demonstrates that GRSPaV‐ML is distinct from each of the five reference isolates.  相似文献   

6.
7.
8.
9.
10.
11.
Apolipoprotein B (APOB) serves an essential role in the assembly and secretion of triglyceride-rich lipoproteins and lipids transport. This study was designed to clone the full-length cDNA of the chicken APOB gene, to characterize the expression profile, and investigate the differential expression between layer and broiler of the chicken APOB gene. The full-length cDNA sequence (14,150-bp) that contained a 13,896-bp ORF encoding 4,631 amino acids was obtained by RT-PCR, RACE, and bioinformatics analysis. qReal-Time PCR analysis showed that the chicken APOB gene was highly expressed in kidney, liver, and intestine. The results of differential expression showed that the APOB gene was more highly expressed in intestine and kidney in Bai'er layer than in broiler, but there was no significant difference in liver between the two breeds. The results of this study provided basic molecular information for studying the role of APOB in the energy transportation in avian species.  相似文献   

12.
Abdominal fat content is an economically important trait in commercially bred chickens. Although many quantitative trait loci (QTL) related to fat deposition have been detected, the resolution for these regions is low and functional variants are still unknown. The current study was conducted aiming at increasing resolution for a region previously shown to have a QTL associated with fat deposition, to detect novel variants from this region and to annotate those variants to delineate potentially functional ones as candidates for future studies. To achieve this, 18 chickens from a parental generation used in a reciprocal cross between broiler and layer lines were sequenced using the Illumina next‐generation platform with an initial coverage of 18X/chicken. The discovery of genetic variants was performed in a QTL region located on chromosome 3 between microsatellite markers LEI0161 and ADL0371 (33 595 706–42 632 651 bp). A total of 136 054 unique SNPs and 15 496 unique INDELs were detected in this region, and after quality filtering, 123 985 SNPs and 11 298 INDELs were retained. Of these variants, 386 SNPs and 15 INDELs were located in coding regions of genes related to important metabolic pathways. Loss‐of‐function variants were identified in several genes, and six of those, namely LOC771163, EGLN1, GNPAT, FAM120B, THBS2 and GGPS1, were related to fat deposition. Therefore, these loss‐of‐function variants are candidate mutations for conducting further studies on this important trait in chickens.  相似文献   

13.
14.
15.
16.
17.
BACKGROUND: Among infants born with spina bifida, the most common defect is myelomeningocele (MM). The prevention of MM by maternal periconceptional folic acid (FA) supplementation has been studied extensively. The protective effect provided by FA suggests that the genes involved in folate metabolism, such as cystathionine beta‐synthase (CBS), warrant further investigation. METHODS: This study sequenced the DNA from 96 patients with MM to identify novel potential disease‐causing variants across the 17 exons of the CBS gene. The frequencies of known single nucleotide polymorphisms (SNPs) were identified, and sequences that differed from the reference sequences were considered novel variants. Statistical analysis was performed using two‐sided Fisher's exact test to compare frequencies of SNPs between groups of patients and the known population frequencies. RESULTS: We found a new variant in exon 3 in one patient that results in a G/A change subsequently encoding a stop codon. In addition, we found a new variant in the 3′‐UTR of exon 17. Allele frequencies for 10 known single nucleotide polymorphisms (SNPs) were determined: rs234706, rs72058776, rs1801181, rs6582281, rs71872941, rs12613, rs706208, rs706209, rs73906420, and rs9982921. Of the remaining 48 known SNPs, all tested DNAs were homozygous for the major allele. CONCLUSION: We identified a previously undescribed variant in exon 3 that encodes a stop codon, thus halting downstream translation of the CBS protein. According to the Human Splicing Finder, the 3′‐UTR variant found in exon 17 is predicted to abolish the recognition sites for two splice binding factors, SRp40 and SF2/ASF. The functional significance of the 3′‐UTR mutation needs to be investigated. Birth Defects Research (Part A), 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
19.
Meg9/Mirg (maternally expressed gene 9/microRNA containing gene), a non‐coding RNA (ncRNA) comprising many alternatively splicing isoforms, has been identified as maternally expressed in mouse and sheep, but its imprinting status and splicing variants are still unknown in cattle. In this study, we found three splicing variants of the cattle MEG9 gene expressed in a tissue‐specific manner. A single nucleotide polymorphism site (SNP c.1354C>G) was identified in exon 3 of cattle MEG9 and used to distinguish between monoallelic and biallelic expression. Our results showed that MEG9 exhibited monoallelic expression in all examined cattle tissues by comparing sequencing results between genomic DNA and cDNA levels at the c.1354C>G SNP site, suggesting that MEG9 is imprinted in cattle.  相似文献   

20.
Inter‐ and intra‐clutch variation in egg corticosterone (CORT), the major glucocorticoid in birds, may provide insights into how maternal stress levels vary with the timing of breeding and with laying order. Common analytical methods (e.g. immunoassays), however, suffer from cross‐reaction with other steroids, leading to potential overestimation of CORT concentrations which can obscure true hormone–environment relationships and complicate among‐study comparisons. We here apply a new LC‐MS/MS technique, which has recently been shown to avoid the problem of cross‐reactivity due to its high specificity, to quantify CORT concentrations in yolk and albumen in clutches of lesser black‐backed gulls Larus fuscus. We found that CORT concentration exhibited a previously unreported U‐shaped relationship with time of breeding, which we explain as a potential interplay of two forces exerting extra strain on the early and late breeders. Furthermore, results showed an increase in CORT with laying order indicating the energetic expense of egg production. The levels of CORT assessed in this study were significantly lower than those previously reported in studies using immunoassays for CORT analysis. This supports the fact that incorporating chromatography effectively reduces overestimation of CORT due to cross‐reactivity with other steroid hormones, particularly in egg yolk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号