首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypic variability in horn characteristics, such as their size, number and shape, offers the opportunity to elucidate the molecular basis of horn development. The objective of this study was to map the genetic determinant controlling the production of four horns in two breeds, Jacob sheep and Navajo‐Churro, and examine whether an eyelid abnormality occurring in the same populations is related. Genome‐wide association mapping was performed using 125 animals from the two breeds that contain two‐ and four‐horned individuals. A case–control design analysis of 570 712 SNPs genotyped with the ovine HD SNP Beadchip revealed a strong association signal on sheep chromosome 2. The 10 most strongly associated SNPs were all located in a region spanning Mb positions 131.9–132.6, indicating the genetic architecture underpinning the production of four horns is likely to involve a single gene. The closest genes to the most strongly associated marker (OAR2_132568092) were MTX2 and the HOXD cluster, located approximately 93 Kb and 251 Kb upstream respectively. The occurrence of an eyelid malformation across both breeds was restricted to polled animals and those carrying more than two horns. This suggests the eyelid abnormality may be associated with departures from the normal developmental production of two‐horned animals and that the two conditions are developmentally linked. This study demonstrated the presence of separate loci responsible for the polled and four‐horned phenotypes in sheep and advanced our understanding of the complexity that underpins horn morphology in ruminants.  相似文献   

2.
Four‐horned sheep are an ideal animal model for illuminating the genetic basis of horn development. The objective of this study was to locate the genetic region responsible for the four‐horned phenotype and to verify a previously reported polled locus in three Chinese breeds. A genome‐wide association study (GWAS) was performed using 34 two‐horned and 32 four‐horned sheep from three Chinese indigenous breeds: Altay, Mongolian and Sishui Fur sheep. The top two significant single nucleotide polymorphisms (SNPs) associated with the four‐horned phenotype were both located in a region spanning positions 132.6 to 132.7 Mb on sheep chromosome 2. Similar locations for the four‐horned trait were previously identified in Jacob, Navajo‐Churro, Damara and Sishui Fur sheep, suggesting a common genetic component underlying the four‐horned phenotype. The two identified SNPs were both downstream of the metaxin 2 (MTX2) gene and the HOXD gene cluster. For the top SNP—OAR2:g.132619300G>A—the strong associations of the AA and AG genotypes with the four‐horned phenotype and the GG genotype with the two‐horned phenotype indicated the dominant inheritance of the four‐horned trait. No significant SNPs for the polled phenotype were identified in the GWAS analysis, and a PCR analysis for the detection of the 1.8‐kb insertion associated with polled sheep in other breeds failed to verify the association with polledness in the three Chinese breeds. This study supports the hypothesis that two different loci are responsible for horn existence and number. This study contributes to the understanding of the molecular regulation of horn development and enriches the knowledge of qualitative traits in domestic animals.  相似文献   

3.
Polyceraty (presence of multiple horns) is rare in modern day ungulates. Although not found in wild sheep, polyceraty does occur in a small number of domestic sheep breeds covering a wide geographical region. Damara are fat‐tailed hair sheep, from the south‐western region of Africa, which display polyceraty, with horn number ranging from zero to four. We conducted a genome‐wide association study for horn number with 43 Damara genotyped with 606 006 SNP markers. The analysis revealed a region with multiple significant SNPs on ovine chromosome 2, in a location different from the mutation for polled in sheep on chromosome 10. The causal mutation for polyceraty was not identified; however, the region associated with polyceraty spans nine HOXD genes, which are critical in embryonic development of appendages. Mutations in HOXD genes are implicated in polydactly phenotypes in mice and humans. There was no evidence for epistatic interactions contributing to polyceraty. This is the first report on the genetic mechanisms underlying polyceraty in the under‐studied Damara.  相似文献   

4.
A dataset consisting of 787 animals with high‐density SNP chip genotypes (346 774 SNPs) and 939 animals with medium‐density SNP chip genotypes (33 828 SNPs) from eight indigenous Swiss sheep breeds was analyzed to characterize population structure, quantify genomic inbreeding based on runs of homozygosity and identify selection signatures. In concordance with the recent known history of these breeds, the highest genetic diversity was observed in Engadine Red sheep and the lowest in Valais Blacknose sheep. Correlation between FPED and FROH was around 0.50 and thereby lower than that found in similar studies in cattle. Mean FROH estimates from medium‐density data and HD data were highly correlated (0.95). Signatures of selection and candidate gene analysis revealed that the most prominent signatures of selection were found in the proximity of genes associated with body size (NCAPG, LCORL, LAP3, SPP1, PLAG1, ALOX12, TP53), litter size (SPP1), milk production (ABCG2, SPP1), coat color (KIT, ASIP, TBX3) and horn status (RXFP2). For the Valais Blacknose sheep, the private signatures in proximity of genes/QTL influencing body size, coat color and fatty acid composition were confirmed based on runs of homozygosity analysis. These private signatures underline the genetic uniqueness of the Valais Blacknose sheep breed. In conclusion, we identified differences in the genetic make‐up of Swiss sheep breeds, and we present relevant candidate genes responsible for breed differentiation in locally adapted breeds.  相似文献   

5.
Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta‐globin haplotypes. Haplotype A is very similar to the goat beta‐globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta‐C globin, which encodes a globin with high oxygen affinity. We surveyed the beta‐globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2–3 million years old. Approximately 40 kb of the sequence flanking the ~37‐kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta‐globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40‐kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40‐kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non‐Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries.  相似文献   

6.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

7.
Polledness has been shown to have autosomal Mendelian inheritance, with the polled locus being dominant to the horned locus. This trait was mapped to the BTA1 centromeric end in several breeds. One of the distinctive attributes of Creole cattle, such as the Argentinean Creole, is the presence of long, lyre‐shaped horns. However, polled native animals were reported before the introduction of modern selected European breeds. Here, we studied the origin of the polled mutation, either independent or introgressed, in a Creole line from the Creole cattle founder group at the IIACS‐INTA Leales Experimental Station (northwest Argentina). The study sample (65 animals: 26 horned and 39 polled) was genotyped using high‐density SNP microarrays and three previously reported genetic markers (P202ID, P80kbID and PG). A genome‐wide association study, selection signatures, linkage disequilibrium analysis and copy number variations were used to detect the responsible region and the segregating haplotypes/alleles. The interval mapped in the Leales herd (1.23–2.13 Mb) overlapped with the region previously reported in several European cattle breeds, suggesting that the same locus could be segregating in this population. The previously reported variants PF and PG were not detected, thus dismissing the Holstein‐Friesian and Nellore origins of the polled phenotype in this native breed. Conversely, the presence of the Celtic variant PC suggests an almost complete co‐segregation. The cluster analysis rejected the hypothesis of recent introgression, which is compatible with the historical record of polled Creole cattle in northwest Argentina.  相似文献   

8.
Ovine lentivirus (OvLV) is a macrophage‐tropic lentivirus found in many countries that causes interstitial pneumonia, mastitis, arthritis and cachexia in sheep. There is no preventive vaccine and no cure, but breed differences suggest marker‐assisted selective breeding might improve odds of infection and control of OvLV post‐infection. Although variants in TMEM154 have consistent association with odds of infection, no variant in any gene has been associated with host control of OvLV post‐infection in multiple animal sets. Proviral concentration is a live‐animal diagnostic measure of OvLV control post‐infection related to severity of OvLV‐induced lesions. A recent genome‐wide association study identified a region including four zinc finger genes associated with proviral concentration in one Rambouillet flock. To refine this region, we tested additional variants and identified a small insertion/deletion variant near ZNF389 that showed consistent association with proviral concentration in three animal sets (< 0.05). These animal sets contained Rambouillet, Polypay and crossbred sheep from multiple locations and management conditions. Strikingly, one flock had exceptionally high prevalence (>87%, including yearlings) and mean proviral concentration (>950 copies/μg), possibly due to needle sharing. The best estimate of proviral concentration by genotype, obtained from all 1310 OvLV‐positive animals tested, showed insertion homozygotes had less than half the proviral concentration of other genotypes (< 0.0001). Future work will test additional breeds, management conditions and viral subtypes, and identify functional properties of the haplotype this deletion variant tracks. To our knowledge, this is the first genetic variant consistently associated with host control of OvLV post‐infection in multiple sheep flocks.  相似文献   

9.
10.
The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole‐genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50‐fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long‐term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male–male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.  相似文献   

11.
Classical genetic studies in European rabbits (Oryctolagus cuniculus) suggested the presence of two alleles at the brown coat colour locus: a wild‐type B allele that gives dense black pigment throughout the coat and a recessive b allele that in the homozygous condition (b/b genotype) produces brown rabbits that are unable to develop black pigmentation. In several other species, this locus is determined by mutations in the tyrosinase‐related protein 1 (TYRP1) gene, encoding a melanocyte enzyme needed for the production of dark eumelanin. In this study, we investigated the rabbit TYRP1 gene as a strong candidate for the rabbit brown coat colour locus. A total of 3846 bp of the TYRP1 gene were sequenced in eight rabbits of different breeds and identified 23 single nucleotide polymorphisms (SNPs; 12 in intronic regions, five in exons and six in the 3′‐untranslated region) and an insertion/deletion of 13 bp, in the 3′‐untranslated region, organised in a few haplotypes. A mutation in exon 2 (g.41360196G>A) leads to a premature stop codon at position 190 of the deduced amino acid sequence (p.Trp190ter). Therefore, translation predicts a truncated TYRP1 protein lacking almost completely the tyrosinase domain. Genotyping 203 rabbits of 32 different breeds identified this mutation only in brown Havana rabbits. Its potential functional relevance in disrupting the TYRP1 protein and its presence only in brown animals strongly argue for this non‐sense mutation being a causative mutation for the recessive b allele at the brown locus in Oryctolagus cuniculus.  相似文献   

12.
Two new pyrrolidine alkaloids, ficushispimines A ( 1 ) and B ( 2 ), a new ω‐(dimethylamino)caprophenone alkaloid, ficushispimine C ( 3 ), and a new indolizidine alkaloid, ficushispidine ( 4 ), together with the known alkaloid 5 and 11 known isoprenylated flavonoids 6  –  16 , were isolated from the twigs of Ficus hispida. Their structures were elucidated by spectroscopic methods. Isoderrone ( 8 ), 3′‐(3‐methylbut‐2‐en‐1‐yl)biochanin A ( 11 ), myrsininone A ( 12 ), ficusin A ( 13 ), and 4′,5,7‐trihydroxy‐6‐[(1R*,6R*)‐3‐methyl‐6‐(1‐methylethenyl)cyclohex‐2‐en‐1‐yl]isoflavone ( 14 ) showed inhibitory effects on α‐glucosidase in vitro.  相似文献   

13.
Based on previous cloning of VpRPW8‐e, we obtained a 1,126 bp VpRPW8‐e promoter sequence in this study. A large number of TATA‐boxes, CAAT‐boxes, and other cis‐acting elements were predicted including light‐responsive elements, hormone‐responsive elements, stress‐responsive elements, and growth‐ and development‐associated elements within the promoter sequence. To further investigate the function of this promoter, we examined its activity in response to biotic and abiotic stress. The VpRPW8‐e promoter was strongly activated by Plasmopara viticola infection, and activation also occurred when the orientation of the promoter was reversed, although to a lesser extent. Deletion analysis showed that the ?1,126 to ?475 bp region of VpRPW8‐e promoter had high activity. A promoter fragment 5′ deleted to ?475 bp (P?475) was activated in response to heat and cold stress, and even more strongly in response to Phytophthora capsici and salicylic acid (SA). Furthermore, Transgenic Nicotiana benthamiana were generated, VpRPW8‐e driven by P?475 enhanced resistance to Ph. capsici in N. benthamiana. Based on these results, the ?475 bp region was deduced to be an indispensable part of the VpRPW8‐e promoter. VpRPW8‐e promoter is involved in pathogen‐ and stress‐inducible expression.  相似文献   

14.
The objective of this study was to search for polymorphisms in the ovine prion‐related protein (testis‐specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene‐coding region was analyzed by single‐strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine‐X‐X‐serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C‐112G‐129T‐144A,17CT‐112GC‐129CT‐144AG and 17T‐112C‐129C‐144G), and the only three animals found homozygous at c.78A had the 17C‐112G‐129C‐144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP).  相似文献   

15.
Chloroplast mRNA translation is regulated by the 5′‐untranslated region (5′‐UTR). Chloroplast 5′‐UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5′‐UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5′‐UTR with the E. coli phage T7 gene 10 5′‐UTR, a highly active 5′‐UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5′‐UTR with a cognate 5′‐coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5′‐UTR and its coding region is important for translational initiation.  相似文献   

16.
17.
Nicotiana species carry cellular T‐DNA sequences (cT‐DNAs), acquired by Agrobacterium‐mediated transformation. We characterized the cT‐DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT‐DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted‐repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine‐type T‐DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine‐type orf14‐mis fragment and a mannopine‐agropine synthesis region (mas2‐mas1‐ags). The mas2′ gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T‐DNA, but also carries octopine synthase‐like (ocl) and c‐like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T‐DNA fragments similar to the right end of the A4 TL‐DNA, and including an orf14‐like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT‐DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT‐DNAs during the evolution of the genus Nicotiana.  相似文献   

18.
19.
20.
The major bovine whey proteins, α‐lactalbumin (α‐LA) and β‐lactoglobulin (β‐LG), exhibit breed‐specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA‐based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non‐synonymous nucleotide exchange were identified. Furthermore, two known α‐LA variants (A and B) and four known β‐LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri‐)alpine cattle breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号