首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stromules are stroma-filled tubules that extend from the surface of plastids and allow the transfer of proteins as large as 550 kDa between interconnected plastids. The aim of the present study was to determine if plastid DNA or plastid ribosomes are able to enter stromules, potentially permitting the transfer of genetic information between plastids. Plastid DNA and ribosomes were marked with green fluorescent protein (GFP) fusions to LacI, the lac repressor, which binds to lacO-related sequences in plastid DNA, and to plastid ribosomal proteins Rpl1 and Rps2, respectively. Fluorescence from GFP-LacI co-localised with plastid DNA in nucleoids in all tissues of transgenic tobacco (Nicotiana tabacum L.) examined and there was no indication of its presence in stromules, not even in hypocotyl epidermal cells, which contain abundant stromules. Fluorescence from Rpl1-GFP and Rps2-GFP was also observed in a punctate pattern in chloroplasts of tobacco and Arabidopsis [Arabidopsis thaliana (L.) Heynh.], and fluorescent stromules were not detected. Rpl1-GFP was shown to assemble into ribosomes and was co-localised with plastid DNA. In contrast, in hypocotyl epidermal cells of dark-grown Arabidopsis seedlings, fluorescence from Rpl1-GFP was more evenly distributed in plastids and was observed in stromules on a total of only four plastids (<0.02% of the plastids observed). These observations indicate that plastid DNA and plastid ribosomes do not routinely move into stromules in tobacco and Arabidopsis, and suggest that transfer of genetic information by this route is likely to be a very rare event, if it occurs at all.  相似文献   

2.
The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, including unidentified open reading frames. The striking feature of this genome is the high degree of gene compaction; it has very short intergenic distances (approximately 40% of the protein genes were overlapped) and no genes have introns. This genome encodes several genes that are rarely found in other plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and they probably function together with other nuclear-encoded components of the sulfate transport system. Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within the red lineage plastids.  相似文献   

3.
Phylogenetic analyses of first and second codon positions (DNA1 + 2 analysis) and amino acid sequences (protein analysis) are often thought to provide similar estimates of deep-level phylogeny. However, here we report a novel artifact influencing DNA level phylogenetic inference of protein-coding genes introduced by codon usage heterogeneity that causes significant incongruities between DNA1 + 2 and protein analyses. DNA1 + 2 analyses of plastid-encoded psbA genes (encoding of photosystem II D1 proteins) strongly suggest a relationship between haptophyte plastids and typical (peridinin-containing) dinoflagellate plastids. The psbA genes from haptophytes and a subset of the peridinin-type plastids display similar codon usage patterns for Leu, Ser, and Arg, which are each encoded by two separated codon sets that differ at first or first plus second codon positions. Our detailed analyses clearly indicate that these unusual preferences shared by haptophyte and some peridinin-type plastid genes are largely responsible for their strong affinity in DNA analyses. In particular, almost all of the support from DNA level analyses for the monophyly of haptophyte and peridinin-type plastids is lost when the codons corresponding to constant Leu, Ser, and Arg amino acids are excluded, suggesting that this signal comes from rapidly evolving synonymous substitutions, rather than from substitutions that result in amino acid changes. Indeed, protein maximum-likelihood analyses of concatenated PsaA and PsbA amino acid sequences indicate that, although 19' hexanoyloxyfucoxanthin-type (19' HNOF-type) plastids in dinoflagellates group with haptophyte plastids, peridinin-type plastids group weakly with those of stramenopiles. Consequently our results cast doubt on the single origin of peridinin-type and 19' HNOF-type plastids in dinoflagellates previously suggested on the basis of psaA and psbA concatenated gene phylogenetic analyses. We suggest that codon usage heterogeneity could be a more general problem for DNA level analyses of protein-coding genes, even when third codon positions are excluded.  相似文献   

4.
The genes for isomaltosyltransferase (CtsY) and 6-glucosyltransferase (CtsZ), involved in synthesis of a cyclic tetrasaccharide from alpha-glucan, have been cloned from the genome of Bacillus globisporus C11. The amino-acid sequence deduced from the ctsY gene is composed of 1093 residues having a signal sequence of 29 residues in its N-terminus. The ctsZ gene encodes a protein consisting of 1284 residues with a signal sequence of 35 residues. Both of the gene products show similarities to alpha-glucosidases belonging to glycoside hydrolase family 31 and conserve two aspartic acids corresponding to the putative catalytic residues of these enzymes. The two genes are linked together, forming ctsYZ. The DNA sequence of 16,515 bp analyzed in this study contains four open reading frames (ORFs) upstream of ctsYZ and one ORF downstream. The first six ORFs, including ctsYZ, form a gene cluster, ctsUVWXYZ. The amino-acid sequences deduced from ctsUV are similar in to a sequence permease and a sugar-binding protein for the sugar transport system from Thermococcus sp. B1001. The third ctsW encodes a protein similar to CtsY, suggested to be another isomaltosyltransferase preferring panose to high-molecular-mass substrates.  相似文献   

5.
The chlorophyll c-containing algae comprise four major lineages: dinoflagellates, haptophytes, heterokonts, and cryptophytes. These four lineages have sometimes been grouped together based on their pigmentation, but cytological and rRNA data had suggested that they were not a monophyletic lineage. Some molecular data support monophyly of the plastids, while other plastid and host data suggest different relationships. It is uncontroversial that these groups have all acquired plastids from another eukaryote, probably from the red algal lineage, in a secondary endosymbiotic event, but the number and sequence of such event(s) remain controversial. Understanding chlorophyll c-containing plastid relationships is a first step towards determining the number of endosymbiotic events within the chromalveolates. We report here phylogenetic analyses using 10 plastid genes with representatives of all four chromalveolate lineages. This is the first organellar genome-scale analysis to include both haptophytes and dinoflagellates. Concatenated analyses support the monophyly of the chlorophyll c-containing plastids and suggest that cryptophyte plastids are the basal member of the chlorophyll c-containing plastid lineage. The gene psbA, which has at times been used for phylogenetic purposes, was found to differ from the other genes in its placement of the dinoflagellates and the haptophytes, and in its lack of support for monophyly of the green and red plastid lineages. Overall, the concatenated data are consistent with a single origin of chlorophyll c-containing plastids from red algae. However, these data cannot test several key hypothesis concerning chromalveolate host monophyly, and do not preclude the possibility of serial transfer of chlorophyll c-containing plastids among distantly related hosts.  相似文献   

6.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containing plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.  相似文献   

7.
Chlorarachniophytes are amoeboflagellate cercozoans that acquired a plastid by secondary endosymbiosis. Chlorarachniophytes are the last major group of algae for which there is no completely sequenced plastid genome. Here we describe the 69.2-kbp chloroplast genome of the model chlorarachniophyte Bigelowiella natans. The genome is highly reduced in size compared with plastids of other photosynthetic algae and is closer in size to genomes of several nonphotosynthetic plastids. Unlike nonphotosynthetic plastids, however, the B. natans chloroplast genome has not sustained a massive loss of genes, and it retains nearly all of the functional photosynthesis-related genes represented in the genomes of other green algae. Instead, the genome is highly compacted and gene dense. The genes are organized with a strong strand bias, and several unusual rearrangements and inversions also characterize the genome; notably, an inversion in the small-subunit rRNA gene, a translocation of 3 genes in the major ribosomal protein operon, and the fragmentation of the cluster encoding the large photosystem proteins PsaA and PsaB. The chloroplast endosymbiont is known to be a green alga, but its evolutionary origin and relationship to other primary and secondary green plastids has been much debated. A recent hypothesis proposes that the endosymbionts of chlorarachniophytes and euglenids share a common origin (the Cabozoa hypothesis). We inferred phylogenies using individual and concatenated gene sequences for all genes in the genome. Concatenated gene phylogenies show a relationship between the B. natans plastid and the ulvophyte-trebouxiophyte-chlorophyte clade of green algae to the exclusion of Euglena. The B. natans plastid is thus not closely related to that of Euglena, which suggests that plastids originated independently in these 2 groups and the Cabozoa hypothesis is false.  相似文献   

8.
We have cloned and sequenced the plastid ATPase operons (atp1 and atp2) and flanking regions from the unicellular red alga Galdieria sulphuraria (Cyanidium caldarium). Six genes (5 atpI, H, G, F, D and A 3) are linked in atp1 encoding ATPase subunits a, c, b, b, and , respectively. The atpF gene does not contain an intron and overlaps atpD by 1 bp. As in the genome of chloroplasts from land plants, the cluster is located downstream of rps2, but between this gene and atp1 we found the gene for the prokaryotic translation elongation factor TS. Downstream of atpA, we detected two open reading frames, one encoding a putative transport protein. The genes atpB and atpE, encoding ATPase subunits and , respectively, are linked in atp2, seperated by a 2 bp spacer. Upstream of atpB, an uninterrupted orf167 was detected which is homologous to an intron-containing open reading frame in land plant chloroplasts. This orf167 is preceded on the opposite DNA strand by a homologue to initiation factor 2 in prokaryotes. The arrangement of atp1 and atp2 is the same as observed in the multicellular red alga Antithamnion sp. indicatiing a conserved genome arrangement in the red algal plastid genome. Differences compared to green chloroplast genomes suggest a large phylogenetic distance between red algae and green plants, while similarities in arrangement and sequence to chromophytic ATPase operons support a red algal origin of chlorophyll a/c-containing plastids or alternatively point to a common prokaryotic endosymbiont.  相似文献   

9.
Our objective was to test whether or not cyclization recombination (CRE), the P1 phage site-specific recombinase, induces genome rearrangements in plastids. Testing was carried out in tobacco plants in which a DNA sequence, located between two inversely oriented locus of X-over of P1 (loxP) sites, underwent repeated cycles of inversions as a means of monitoring CRE activity. We report here that CRE mediates deletions between loxP sites and plastid DNA sequences in the 3'rps12 gene leader (lox-rps12) or in the psbA promoter core (lox-psbA). We also observed deletions between two directly oriented lox-psbA sites, but not between lox-rps12 sites. Deletion via duplicated rRNA operon promoter (Prrn) sequences was also frequent in CRE-active plants. However, CRE-mediated recombination is probably not directly involved, as no recombination junction between loxP and Prrn could be observed. Tobacco plants carrying deleted genomes as a minor fraction of the plastid genome population were fertile and phenotypically normal, suggesting that the absence of deleted genome segments was compensated by gene expression from wild-type copies. The deleted plastid genomes disappeared in the seed progeny lacking CRE. Observed plastid genome rearrangements are specific to engineered plastid genomes, which contain at least one loxP site or duplicated psbA promoter sequences. The wild-type plastid genome is expected to be stable, even if CRE is present in the plastid.  相似文献   

10.
11.
12.
EcoRI and BamHI fragments of rye chloroplast DNA comprising psbA gene were cloned and a 2729 bp region was sequenced. Cloning of EcoRI fragment into pTZ19R plasmid led to a single nucleotide deletion in the coding region of psbA gene. A scheme of full-length psbA gene cloning is proposed, allowing one to escape the damage effect of the psbA gene expression product on the host cell. The differences between monocot and dicot in nucleotide sequences of DNA downstream of psbA genes are discussed. Gene rps19 is located 131 bp downstream from psbA gene on the complementary strand. The amino acid sequences of D1 and S19 proteins of different species are compared.  相似文献   

13.
14.
烟草质体多顺反子定点整合表达载体的构建和转化   总被引:1,自引:0,他引:1  
构建了烟草质体多顺反子定点整合表达载体pLM4(-psaA-Prrn-RBS-man-RBS-gfp-RBS-aadA-psbA3'-psbC-).用基因枪将该载体轰击烟草叶片5次,用添加了壮观霉素的选择分化培养基筛选,获得质体转基因烟草6株.用PCR、激光扫描、Western blot和RFLP等方法检测都证实多顺反子表达盒中的3个基因甘露聚糖酶基因(man)、绿荧光蛋白基因(gfp)、氨基糖苷3'-腺苷酰基转移酶基因(aadA)已整合到烟草质体基因组中,且均得到表达.  相似文献   

15.
16.
17.
Some species of the dinoflagellate genus Dinophysis form red tides and are toxin producers with a great environmental impact. The dinoflagellates as a group display high plastid diversity. Several cases indicate that plastids have been replaced. In the case of the genus Dinophysis, the plastids show characteristics of a plastid originating from a cryptophyte. Recent molecular evidence showed that the plastid indeed originates from a cryptophyte, but the source could not be identified to species or genus level. The data presented here show that both a 799 bp region of the psbA gene and 1,221 bp region of the 16S rRNA gene from Dinophysis spp. are identical to the same loci in Teleaulax amphioxeia SCCAP K434. This strongly indicates that the plastid was acquired recently in Dinophysis and may be a so-called kleptoplastid, specifically originating from a species of Teleaulax.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号