首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We used fluorescein-tagged β-lactam antibiotics to visualize penicillin-binding proteins (PBPs) in sporulating cultures of Streptomyces griseus. Six PBPs were identified in membranes prepared from growing and sporulating cultures. The binding activity of an 85-kDa PBP increased fourfold by 10 to 12 h of sporulation, at which time the sporulation septa were formed. Cefoxitin inhibited the interaction of the fluorescein-tagged antibiotics with the 85-kDa PBP and also prevented septum formation during sporulation but not during vegetative growth. The 85-kDa PBP, which was the predominant PBP in membranes of cells that were undergoing septation, preferentially bound fluorescein-6-aminopenicillanic acid (Flu-APA). Fluorescence microscopy showed that the sporulation septa were specifically labeled by Flu-APA; this interaction was blocked by prior exposure of the cells to cefoxitin at a concentration that interfered with septation. We hypothesize that the 85-kDa PBP is involved in septum formation during sporulation of S. griseus.  相似文献   

2.
3.
4.
5.
6.
Mutations in the spoIVA locus of Bacillus subtilis abolish cortex synthesis and interfere with the synthesis and assembly of the spore coat. We have characterized the cloned spoIVA locus in terms of its physical structure and regulation during sporulation. The locus contains a single gene capable of encoding an acidic protein of 492 amino acids (molecular weight, 55,174). The gene is transcribed from a sigma E-dependent promoter soon after the formation of the spore septum. A genetic test indicated that expression of spoIVA is only necessary in the mother cell compartment for the formation of a mature spore. This, together with the phenotypic properties of spoIVA mutations, would be in accord with the hypothesis that sigma E is only active after septation and in the mother cell compartment.  相似文献   

7.
When a final concentration of 0.4 mug of ethidium bromide (EB) per ml, which is subinhibitory to vegetative growth, is added to sporulating cells of Bacillus subtilis Marburg during either stage 0 or the early part of stage 1, morphogenesis is blocked. If the given concentration of EB is added after the early part of stage 1, sporogenesis is unaffected. The synthesis of the serine protease and antibiotic, which are believed to be associated with sporulation events during the early part of stage 0, are not inhibited by EB. Enhanced binding of [(14)C]benzylpenicillin to sporulating cells during septation (stage 2) is a measure of the presence of terminal enzymes for germ cell wall peptidoglycan synthesis. EB does not interfere with the binding of penicillin to sporulating cells, but penicillin remains more permanently bound to EB-treated postlogarithmic cells than to untreated sporulating cells. The absence of an interval of increased penicillin binding activity during stage 2 by sporulating cells treated with EB indicates that EB blocks sporulation prior to the completion of the germ cell wall.  相似文献   

8.
Deletion of the citC gene, coding for isocitrate dehydrogenase, arrests sporulation of Bacillus subtilis at stage I after bipolar localization of the cell division protein FtsZ but before formation of the asymmetric septum. A spontaneous extragenic suppressor mutation that overcame the stage I block was found to map within the spoVG gene. The suppressing mutation and other spoVG loss-of-function mutations enabled citC mutant cells to form asymmetric septa and to activate the forespore-specific sigma factor sigmaF. However, little induction of mother cell-specific, sigmaE-dependent sporulation genes was observed in a citC spoVG double mutant, indicating that there is an additional defect(s) in compartmentalized gene expression in the citC mutant. These other defects could be partially overcome by reducing the synthesis of citrate, by buffering the medium, or by adding excess MnCl2. Overexpression of the spoVG gene in wild-type cells significantly delayed sigmaF activation. Increased expression and stability of SpoVG in citC mutant cells may contribute to the citC mutant phenotype. Inactivation of the spoVG gene caused a population of otherwise wild-type cells to produce a small number of minicells during growth and caused sporulating cells to complete asymmetric septation more rapidly than normal. Unlike the case for inactivation of the cell division inhibitor gene minD, many of these minicells contained DNA and appeared only when the primary sporulation signal transduction pathway, the Spo0A phosphorelay, was active. These results suggest that SpoVG interferes with or is a negative regulator of the pathway leading to asymmetric septation.  相似文献   

9.
10.
The RNA polymerase sigma factor sigma(F) is a developmental regulatory protein that is activated in a cell-specific manner following the formation of the polar septum during the process of spore formation in the bacterium Bacillus subtilis. Activation of sigma(F) depends on the membrane-bound phosphatase SpoIIE, which localizes to the septum, and on the formation of the polar septum itself. SpoIIE is responsible for dephosphorylating and thereby activating the phosphoprotein SpoIIAA, which, in turn, triggers the release of sigma(F) from the anti-sigma(F) factor SpoIIAB. Paradoxically, however, the presence of unphosphorylated SpoIIAA is insufficient to cause sigma(F) activation as SpoIIAA reaches substantial levels in mutants blocked in polar septation. We now describe mutants of SpoIIE, SpoIIAA, and SpoIIAB that break the dependence of sigma(F) activation on polar division. Analysis of these mutants indicates that unphosphorylated SpoIIAA must reach a threshold concentration in order to trigger the release of sigma(F) from SpoIIAB. Evidence is presented that this threshold is created by the action of SpoIIAB, which can form an alternative, long lived complex with SpoIIAA. We propose that formation of the SpoIIAA-SpoIIAB complex serves as a sink that traps SpoIIAA in an inactive state and that only when unphosphorylated SpoIIAA is in excess to the sink does activation of sigma(F) take place.  相似文献   

11.
12.
13.
During formation of spores by Bacillus subtilis the RNA polymerase factor sigma(G) ordinarily becomes active during spore formation exclusively in the prespore upon completion of engulfment of the prespore by the mother cell. Formation and activation of sigma(G) ordinarily requires prior activity of sigma(F) in the prespore and sigma(E) in the mother cell. Here we report that in spoIIA mutants lacking both sigma(F) and the anti-sigma factor SpoIIAB and in which sigma(E) is not active, sigma(G) nevertheless becomes active. Further, its activity is largely confined to the mother cell. Thus, there is a switch in the location of sigma(G) activity from prespore to mother cell. Factors contributing to the mother cell location are inferred to be read-through of spoIIIG, the structural gene for sigma(G), from the upstream spoIIG locus and the absence of SpoIIAB, which can act in the mother cell as an anti-sigma factor to sigma(G). When the spoIIIG locus was moved away from spoIIG to the distal amyE locus, sigma(G) became active earlier in sporulation in spoIIA deletion mutants, and the sporulation septum was not formed, suggesting that premature sigma(G) activation can block septum formation. We report a previously unrecognized control in which SpoIIGA can prevent the appearance of sigma(G) activity, and pro-sigma(E) (but not sigma(E)) can counteract this effect of SpoIIGA. We find that in strains lacking sigma(F) and SpoIIAB and engineered to produce active sigma(E) in the mother cell without the need for SpoIIGA, sigma(G) also becomes active in the mother cell.  相似文献   

14.
Stable messenger ribonucleic acid (mRNA) was shown to be involved in both enterotoxin synthesis and synthesis of other spore coat proteins in Clostridium perfringens. When used at a concentration that inhibited [14C]uracil incorporation, rifampin, a specific inhibitor of deoxyribonucleic acid-dependent RNA polymerase, prevented incorporation of a mixture of labeled amnoo acids by 3-h sporulating cells. At that time, enterotoxin protein was first detectable and cells were primarily at stage II or III of sporulation. When rifampin or streptolydigin was added to 5-h sporulating cells, which were primarily at stage IV or V and had significant toxin levels, incorporation of labeled amino acids continued through 30 min despite its presence. Rifampin also failed to prevent the specific synthesis of enterotoxin, a structural protein of the spore coat. The half-life of enterotoxin RNA was estimated to be at least 58 min. When cell extracts from 5-h sporulating cells that had been exposed to 3H-labeled amino acids for 10 min were subjected to electrophoresis on polyacrylamide gels and the gels were subsequently analyzed for radioactivity, two major peaks of radioactivity were obtained. The two peaks corresponded to enterotoxin and another spore coat protein(s). Similar results were obtained when the cells had been preincubated for 60 min with rifampin before label addition, indicating the functioning of stable mRNA.  相似文献   

15.
Inhibition of Escherichia coli Division by Protein X   总被引:4,自引:0,他引:4       下载免费PDF全文
We propose that protein X provides the connection between damage to Escherichia coli DNA and inhibition of septation and cell division. This connection is needed to guarantee that each new bacterium receives a complete DNA copy. We present several new experiments here which demonstrate that the degree to which septation is inhibited following damage to DNA is correlated with the amount of protein X that is produced. Rifampin selectively blocks protein X production. This drug was shown to allow cells whose DNA had been damaged by nalidixic acid to resume septation. Several mutants formed septa-less filaments and also produced protein X at 42 degrees C; rifampin both inhibited their production of protein X and permitted them to form septa and divide. Essentially complementary results were obtained with a dnaA mutant which at 42 degrees C stopped making DNA, did not produce protein X, and continued to divide; added bleomycin degraded DNA, induced protein X, and inhibited septation. These results, as well as previous observations, are all consistent with the proposal that protein X is produced as a consequence of DNA damage and is an inhibitor of septation. We suggest that septation could require binding of a single-stranded region of DNA to a septum site in the membrane. Protein X could block this binding by combining with the DNA. This control could provide an emergency mechanism in addition to the usually proposed coordination in which completion of DNA synthesis creates a positive effector for a terminal step of septation. Or it could be the sole coordinating mechanism, even under unperturbed growth conditions.  相似文献   

16.
At the onset of sporulation in Bacillus subtilis, two potential division sites are assembled at each pole, one of which will be used to synthesize the asymmetrically positioned sporulation septum. Using the vital stain FM 4-64 to label the plasma membrane of living cells, we examined the fate of these potential division sites in wild-type cells and found that, immediately after the formation of the sporulation septum, a partial septum was frequently synthesized within the mother cell at the second potential division site. Using time-lapse deconvolution microscopy, we were able to watch these partial septa first appear and then disappear during sporulation. Septal dissolution was dependent on sigma E activity and was partially inhibited in mutants lacking the sigma E-controlled proteins SpoIID, SpoIIM and SpoIIP, which may play a role in mediating the degradation of septal peptidoglycan. Our results support a model in which sigma E inhibits division at the second potential division site by two distinct mechanisms: inhibition of septal biogenesis and the degradation of partial septa formed before sigma E activation.  相似文献   

17.
In view of previously published reports of localized membrane growth in exponentially growing Bacillus megaterium and in sporulating Bacillus cereus, an attempt was made to describe phospholipid metabolism and the topology of membrane synthesis during sporulation in B. megaterium. The cells were pulsed with radioactive glycerol or acetate at the time of septum formation, and the specific activity of the lipid fraction was measured at various times through the free spore stage. The bulk of the material labeled during septation could not be recovered in the spore. Rather, it was found that the labeled lipid fraction underwent considerable turnover during spore development. Additionally, other experiments revealed that the lipid made before the initiation of sporulation was also subject to extensive turnover. In order to minimize both the confounding effects of lipid turnover and the possible presence of lateral diffusion of labeled lipid in the membrane, autoradiography of cells pulse labeled with radioactive glycerol at the time of septation was performed; a symmetrical grain distribution resulted. Thus, despite previously published suggestions to the contrary, the current experimental techniques could not demonstrate the existence of localized membrane synthesis in B. megaterium during sporulation.  相似文献   

18.
We have isolated mutations that block sporulation after formation of the polar septum in Bacillus subtilis. These mutations were mapped to the two genes of a new locus, spoIIS. Inactivation of the second gene, spoIISB, decreases sporulation efficiency by 4 orders of magnitude. Inactivation of the first gene, spoIISA, has no effect on sporulation but it fully restores sporulation of a spoIISB null mutant, indicating that SpoIISB is required only to counteract the negative effect of SpoIISA on sporulation. An internal promoter ensures the synthesis of an excess of SpoIISB over SpoIISA during exponential growth and sporulation. In the absence of SpoIISB, the sporulating cells show lethal damage of their envelope shortly after asymmetric septation, a defect that can be corrected by synthesizing SpoIISB only in the mother cell. However, forced synthesis of SpoIISA in exponentially growing cells or in the forespore leads to the same type of morphological damage and to cell death. In both cases protection against the killing effect of SpoIISA can be provided by simultaneous synthesis of SpoIISB. The spoIIS locus is unique to B. subtilis, and since it is completely dispensable for sporulation its physiological role remains elusive.  相似文献   

19.
SpoIIE is a bifunctional protein which controls sigmaF activation and formation of the asymmetric septum in sporulating Bacillus subtilis. The spoIIE gene of B. subtilis has now been overexpressed in Escherichia coli, and SpoIIE has been purified by anion-exchange chromatography and affinity chromatography. Kinetic studies showed that the rate of dephosphorylation of SpoIIAA-P by purified SpoIIE in vitro was 100 times greater, on a molar basis, than the rate of phosphorylation of SpoIIAA by SpoIIAB. The intracellular concentrations of SpoIIE and SpoIIAB were measured by quantitative immunoblotting between 0 and 4 h after the beginning of sporulation. The facts that these concentrations were very similar at hour 2 and that SpoIIE could be readily detected before asymmetric septation suggest that SpoIIE activity may be strongly regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号