首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Parasponia remains the only non-legume known to nodulate withRhizobium/Bradyrhizobium. It is a pioneer plant that is capable of rapid growth and fixing large quantities of nitrogen. In addition to its high agronomic potential, the symbiosis offers the scientist the unique opportunity of studying differences at the molecular level of both partners, and to investigate any possible extension of the symbiosis to other non-legumes of importance. Haemoglobin has been found in the nodule tissue ofParasponia and other nodulated non-legumes and the gene for it has been found and expressed in non-nodulating plants such asTrema tomentosa andCeltis australis. Bradyrhizobium strains isolated from species ofParasponia growing in Papua New Guinea form a group that are more specific in their host requirements thanBradyrhizobium strains from tropical legumes from the same area. They do not effectively nodulate (except CP283) tropical legumes, andParasponia is not readily nodulated withRhizobium andBradyrhizobium strains from legumes. The effectiveness of the symbiosis is influenced by host species, theBradyrhizobium strain and the environment.Parasponia andersonii forms a more effective symbiosis than the other species tested. In competition studies with strains from legumes, isolates fromParasponia always dominate in nodules onParasponia.  相似文献   

2.
Vigna unguiculata was introduced into Europe from its distribution centre in Africa, and it is currently being cultivated in Mediterranean regions with adequate edapho-climatic conditions where the slow growing rhizobia nodulating this legume have not yet been studied. Previous studies based on rrs gene and ITS region analyses have shown that Bradyrhizobium yuanmingense and B. elkanii nodulated V. unguiculata in Africa, but these two species were not found in this study. Using the same phylogenetic markers it was shown that V. unguiculata, a legume from the tribe Phaseolae, was nodulated in Spain by two species of group I, B. cytisi and B. canariense, which are common endosymbionts of Genisteae in both Europe and Africa. These species have not been found to date in V. unguiculata nodules in its African distribution centres. All strains from Bradyrhizobium group I isolated in Spain belonged to the symbiovar genistearum, which is found at present only in Genisteae legumes in both Africa and Europe. V. unguiculata was also nodulated in Spain by a strain from Bradyrhizobium group II that belonged to a novel symbiovar (vignae). Some African V. unguiculata-nodulating strains also belonged to this proposed new symbiovar.  相似文献   

3.
Three slow-growingBradyrhizobium japonicum (G3, USDA-110 and KUL-150) of diverse origins and two fast-growing strains ofRhizobium fredii (USDA-192 and USDA-193) were tested with a cropped soybean (Glycine max L. Merrill) cultivar, two cowpeas (Vigna unguiculata), one mung-bean (Phaseolus radiata), one winged-bean (Psophocarpus tetragonolobus) and one field bean (Phaseolus vulgaris) varieties.TheR. fredii strains nodulated and fixed Nitrogen as effectively as the strains ofB. japonicum in a modern european soybean cultivar, namely Fiskeby V. The other western bred soybeans tested were not nodulated by theseR. fredii strains. All of the soybean rhizobia produced nodules in both cowpeas and in mung-bean; theR. fredii strains showed effective N2-fixation in the cowpeas, particularly USDA-193, yielding shoot dry weights greater than those from theB. japonicum. The symbiotic performance of theR. fredii strains with soybean and other legumes indicated that they should be placed in an intermediate group between the slow-growingB. japonicum and cowpearhizobium sp.The hydrogen uptake activites suggested a possible host effect on the expression of such genes in one out of theB. japonicum strains tested. Furthermore, the slow-growing rhizobia showed significantly higher nitrate-reduction than theR. fredii in the nodules.  相似文献   

4.
Generation times, acid production, carbon utilization, immunological properties, plasmid content, protein profile and symbiotic properties of 15 isolates of rhizobia nodulating Lotus subbiflorus were studied. Based on specific growth rates, carbon source utilization and acid production, 13 out of the 15 isolates could be assigned to the slow-growing group of rhizobia (bradyrhizobia). Using antisera against whole cells of three isolates, we separated the 15 isolates into three serogroups. Only the slow-growing isolate Ls4 and the fast-growers Ls5 and Ls552 lacked cross-reactivity with any of the sera tested. Electrophoretic mobilities of whole cell protein from seven out of the eight isolates included in the serogroup represented by strain Ls31 were identical. Similarly, isolates Ls1B3 and Ls1B4, both in serogroup Ls1B3, had the same pattern of cell proteins. In contrast, isolates Ls3 and Ls7, belonging to serogroup Ls7, differed in protein profile. Plant growth experiments carried out under bacteriologically controlled conditions revealed that all of the isolates effectively nodulated L. subbiflorus and L. pedunculatus, but were unable to form effective nodules on L. tenuis and L. corniculatus. All isolates showed similar effectiveness in symbiosis with L. subbiflorus, except isolate Ls7, which gave significantly higher plant dry weight.Abbreviations ELISA enzyme linked immuno-sorbent assay - kDa kiloDalton - MM mineral medium - PBS phosphate-buffered saline - RE relative efficiency - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - YEM deyeast extract mannitol  相似文献   

5.
Cultural and physiological properties, serology, plasmid profiles and infective traits were determined for 23 strains of rhizobia isolated from various Hedysarum species: H. coronarium (common name: sulla) (16), H. carnosum (1), H. alpinum (3), H. mackenzii (2) and H. pallens (1) from Portugal, Spain, Tunisia, Alaska and Israel. Strains isolated from H. alpinum, H. mackenzii and H. pallens have slow growth rates on yeast-extract mannitol medium and were unable to nodulate H. coronarium plants, whereas the latter were effectively nodulated by all sixteen fast growing strains from sulla. Regardless of the country of origin all H. coronarium strains fell into one serogroup and were not serologically related with strains of other Hedysarum species. The RAPD (random amplified polymorphic DNA) fingerprinting method which was carried out on five H. coronarium and three H. alpinum strains allowed distinction to be made among serologically related rhizobia. No particular plasmid profile pattern was observed in relation to the host or geographical origin of the strains.  相似文献   

6.
Genes controlling nitrogen-fixing symbioses of legumes with specialized bacteria known as rhizobia are presumably the products of many millions of years of evolution. Different adaptative solutions evolved in response to the challenge of survival in highly divergent complexes of symbionts. Whereas efficiency of nitrogen fixation appears to be controlled by quantitative inheritance, genes controlling nodulation are qualitatively inherited. Genes controlling nodulation include those for non-nodulation, those that restrict certain microsymbionts, and those conditioning hypernodulation, or supernodulation. Some genes are naturally occurring polymorphisms, while others were induced or were the result of spontaneous mutations. The geographic patterns of particular alleles indicate the role of coevolution in determining symbiont specificites and compatibilities. For example, the Rj4 allele occurs with higher frequency (over 50%) among the soybean (G. max) from Southeast Asia. DNA homology studies of strains of Bradyrhizobium that nodulate soybean indicated two groups so distinct as to warrant classification as two species. Strains producing rhizobitoxine-induced chlorosis occur only in Group II, now classified as B. elkanii. Unlike B. japonicum, B. elkanii strains are characterized by (1) the ability to nodulate the rj1 genotype, (2) the formation of nodule-like structures on peanut, (3) a relatively high degree of ex planta nitrogenase activity, (4) distinct extracellular polysaccharide composition, (5) distinct fatty acid composition, (6) distinct antibiotic resistance profiles, and (7) low DNA homology with B. japonicum. Analysis with soybean lines near isogenic for the Rj4 versus rj4 alleles indicated that the Rj4 allele excludes a high proportion of B. elkanii strains and certain strains of B. japonicum such as strain USDA62 and three serogroup 123 strains. These groups, relatively inefficient in nitrogen fixation with soybean, tend to predominate in soybean nodules from many US soils. The Rj4 allele, the most common allelic form in the wild species, has a positive value for the host plants in protecting them from nodulation by rhizobia poorly adapted for symbiosis.  相似文献   

7.
A study was conducted with the aim of evaluating the genetic diversity of alfalfa rhizobia isolated from volcanic soils in southern Chile and their ability to establish an effective symbiosis with alfalfa. Rhizobial strains isolated from nodules were identified and selected based on PCR analyses and acid tolerance. Symbiotic effectiveness (nodulation and shoot dry weight) of acid-tolerant rhizobia was evaluated in glasshouse experiments under acidic conditions. The results revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules with a high genetic diversity at strain level grouped in three major clusters. There was a close relationship (r 2 = 0.895, P ≤ 0.001, n = 40) between soil pH and the size of rhizobial populations. Representative isolates from major cluster groups showed wide variation in acid tolerance expressed on buffered agar plates (pH 4.5–7.0) and symbiotic effectiveness with alfalfa. One isolate (NS11) appears to be suitable as an inoculant for alfalfa according to its acid tolerance and symbiotic effectiveness at low pH (5.5). The isolation and selection of naturalized S. meliloti strains with high symbiotic effectiveness under acidic conditions is an alternative approach to improving the productivity of alfalfa and for reducing the application of synthetic fertilizers in Chile.  相似文献   

8.
Herb legumes have great potential for rehabilitation of semi-arid degraded soils in Sahelian ecosystems as they establish mutualistic symbiosis with N2-fixing rhizobia. A phylogenetic analysis was performed for 78 root nodule bacteria associated with the common Sahelian herb legume Zornia glochidiata Reichb ex DC in Senegal. Based on ITS (rDNA16S-23S) and recA sequences, these strains were shown to belong to the two genera Bradyrhizobium and Azorhizobium. Strains of this latter, although frequent, formed small and ineffective nodules and suggested a parasitism rather than a symbiotic association. A potential negative effect of Azorhizobium on Zornia growth was tested for when inoculated alone or in association with a Bradyrhizobium strain. Bradyrhizobium isolates were distributed in four groups. Groups A and B were two sister clades in a larger monophyletic group also including Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense, and Bradyrhizobium japonicum. Strains of cluster D fell in a sister clade of the photosynthetic Bradyrhizobium sp. group, including ORS278, whereas group C appeared to be divergent from all known Bradyrhizobium clusters. Amplified fragment length polymorphism (AFLP) clustering was congruent with ITS and recA phylogenies, but displayed much more variability. However, within the main Bradyrhizobium clades, no obvious relationship could be detected between clustering and geographical origin of the strains. Each sub-cluster included strains sampled from different locations. Conversely, Azorhizobium strains showed a tendency in the phylogeny to group together according to the site of sampling. The predominance of ineffective Azorhizobium strains in the nodules of Zornia roots, the large Bradyrhizobium genetic diversity and the geographical genetic diversity pattern are explored.  相似文献   

9.
Snap bean fields in 12 of the 25 governorates of Egypt were surveyed to determine the distribution and taxonomy of snap bean-nodulating rhizobia. Nodulation rates in the field were very low, indicating that Egyptian soils do not have sufficient numbers of snap bean-compatible Rhizobium spp. A total of 87 rhizobial isolates were assayed on the most commonly grown cultivars in order to identify the most effective strains. The five most effective isolates (R11, R13, R28, R49 and R52) were fast-growing and utilized a wide range of carbon and nitrogen sources. A phylogenetic assignment of these strains by analysis of the 16S ribosomal RNA gene suggested that all fell within the Rhizobium etliRhizobium leguminosarum group. Strains R11, R49 and R52 all clustered with other identified R. etli strains, while strains R13 and R28 were more distinct. The distinctness of R13 and R28 was supported by physiological characteristics, such as their ability to utilize citrate, erythritol, dulcitol and lactate. Strains R13 and R28 also yielded the highest plant nitrogen content of all isolates.The highly effective strains isolated in this study, in particular strains R13 and R28, are promising candidates for improving crop yields. The data also suggested that these two strains represented a novel sub-group within the R. etli–R. leguminosarum group. As snap bean is a crop of great economic value to Egypt, the identification of highly effective rhizobial strains adapted to Egyptian soils, such as strains R13 and R28, is of great interest.  相似文献   

10.
The effect of nitrate on the symbiotic properties of nitrate-reductase-deficient mutants of a strain of cowpea rhizobia (32H1), and of a strain of Rhizobium trifolii (TA1), were examined; the host species were Macroptilium atropurpureum (DC.) Urb. and Trifolium subterraneum L. Nitrate retarded initial nodulation by the mutant strains to an extent similar to that found with the parent strains. It is therefore unlikely that nitrite produced from nitrate by the rhizobia, plays a significant role in the inhibition of nodulation by nitrate. Nitrite is an inhibitor of nitrogenase, and its possible production in the nodule tissue by the action of nitrate reductase could be responsible for the observed inhibition of nitrogen fixation when nodulated plants are exposed to nitrate. However, the results of this investigation show that nitrogen fixation by the plants nodulated by parent or mutant strains was depressed by similar amounts in the presence of nitrate. No nitrite was detected in the nodules. Nodule growth, and to a lesser extent, the nitrogenase specific activity of the nodules (mol C2H4g–1 nodule fr. wt. h–1), were both affected by the added nitrate.  相似文献   

11.
Kishinevsky  B. D.  Nandasena  K. G.  Yates  R. J.  Nemas  C.  Howieson  J.G. 《Plant and Soil》2003,251(1):143-153
Cultural, physiological and biochemical properties of 18 strains of rhizobia isolated from root nodules of the forage legume H. spinosissimum were compared with those of rhizobia from the related species H. coronarium (15 strains) and H. flexuosum (four strains). On the basis of 43 characteristics the 37 strains of Hedysarum rhizobia could be divided into two groups by numerical analysis. The H. spinosissimum rhizobia formed the first group and the second group comprised the strains from H. coronarium and H. flexuosum. The reference Rhizobium leguminosarum bv. viceae strain 250A was clustered with the rhizobia from H. coronarium and H. flexuosum. By contrast Bradyrhizobium sp. (Arachis) reference strain 280A was not clustered with any of the strains tested, indicating that the H. spinosissimum rhizobia differ from both Rhizobium and Bradyrhizobium. Serological data also discriminate between H. spinosissimum and H. coronariumrhizobia but not between the latter and H. flexuosum strains. The strains tested exhibit a high degree of specificity for nodulation and nitrogen fixation. We also determined the16SrRNA gene sequence of H. spinosissimum rhizobia (four strains), H. coronarium (two strains) and H. flexuosum (two strains) and found that the four H. spinosissimum isolates share a 98% identity among each other in this region but they showed less than 92% identity to the H. coronarium and H. flexuosum isolates. The H. spinosissimum isolates were closely related to both Mesorhizobium loti and M. ciceri, sharing 97% identity with each species.  相似文献   

12.
We have investigated the effect on growth of fertilisation versus biological nitrogen fixation by rhizobial nodules in Retama sphaerocarpa(L.) Boiss, a leafless leguminous shrub native to the Iberian Peninsula and North-West Africa that has generated interest for revegation of dry Mediterranean habitats. Our main objective was to optimise the formation of root nodules under nursery conditions and to evaluate their influence on the first year of seedling growth in comparison with standard fertilisation. Seedlings of R. sphaerocarpa from two Spanish localities were grown under two levels of fertilisation, and half of each were inoculated with rhizobia isolated from adult Retama, Cytisus and Adenocarpusplants in the field. Although some promiscuity was observed, nodulation was significantly successful with specific rhizobia. At the end of the experiment, highly fertilised plants were taller and heavier and exhibited larger photosynthetic rates than either nodulated or non-nodulated plants under low fertilisation. High fertilisation enhanced seedling growth but inhibited both the nodulation and the nitrogenase activity of the nodules. Thus, physiological differences between nodulated and non-nodulated plants were observed in the low but not in the high fertilisation treatment. Nitrogen uptake and use was enhanced by root nodules, which translated into enhanced photosynthesis and growth. Since inoculation is simple, environmentally friendly and cheap, and nodulated plants are more likely to overcome transplant stress than non-nodulated ones, our results suggest that inoculation together with low, background fertilisation (instead of high fertilisation) should be used when producing high quality seedlings of this autochthonous Mediterranean shrub.  相似文献   

13.
Patterns of nodulation, growth, andFrankia — host specificity have not been well characterized for the actinorhizal genera in the family Rosaceae because of the scarcity ofFrankia isolates from these taxa. Furthermore, the few isolates available from actinorhizal Rosaceae have consistently failed to nodulate plants from the host genus. In a series of experiments, species of rosaceousDryas, Cowania, Cercocarpus, Fallugia, andPurshia were inoculated withFrankia isolates, crushedDryas actinorhizae, and neoglacial soils to ascertain whether any of these inocula would effectively induce nodulation. Neoglacial soils from Alaska and Canada nodulated not only the localDryas drummondii, but alsoCercocarpus betuloides, Cowania mexicana andPurshia tridentata from distant and ecologically diverse locales as well as nonrosaceous, actinorhizal species ofAlnus, Elaeagnus, Myrica, andShepherdia. But of eightFrankia isolates, including two fromPurshia tridentata and one fromCowania mexicana, none were able to induce nodulation onPurshia orCowania species. Globular, actinorhizae-like nodules incapable of acetylene reduction were produced onC. betuloides inoculated withFrankia isolates. Crushed nodule suspensions fromDryas drummondii nodulated rosaceousCowania, Dryas andPurshia, as well as non-rosaceousElaeagnus, Myrica, andShepherdia species. Nodules produced by inoculation ofCowania mexicana andPurshia tridentata with crushed, dried nodule suspensions fromDryas drummondii reduced acetylene to ethylene, indicating nitrogenase activity for these nodulated plants. These data suggest that a similar microsymbiont infects the actinorhizal genera in the family Rosaceae.  相似文献   

14.
Plant genotypes that limit nodulation by indigenous rhizobia while nodulating normally with inoculant-strain nodule occupancy in Phaseolus vulgaris. In this study, eight of nine Rhizobium tropici strains and six of 15 Rhizobium etli strains examined, showed limited ability to nodulate and fix nitrogen with the two wild P. vulgaris genotypes G21117 and G10002, but were effective in symbiosis with the cultivated bean genotypes Jamapa and Amarillo Gigante. Five of the R. etli strains restricted in nodulation by G21117 and G10002 produced an alkaline reaction in yeast mannitol medium. In a competition experiment in which restricted strains were tested in 1:1 mixtures with the highly effective R. etli strain CIAT632, the restricted strains produced a low percentage of the nodules formed on G2117, but produced over 40% of the nodules formed on Jamapa. The interaction of the four Rhizobium strains with the two bean genotypes, based on the percentage of nodules formed, was highly significant (P<0.001).  相似文献   

15.
The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host.  相似文献   

16.
Summary Fifteen isolates of nodule bacteria were isolated from root and stem nodules ofAeschynomene aspera and they were characterized as Rhizobium by well known laboratory tests. All these isolates together with other efficient strains of known rhizobia belonging to different cross-inoculation groups were evaluated for their nodulation abilities onAeschynomene aspera, Cajanus cajan (pigeon pea),Cicer arietinum (chickpea),Pisum sativum (pea),Trifolium repens (clover),Medicago sativa (lucerne),Lens culinaris (lentil),Glycine max (soybean),Vigna sinensis (cowpea),Vigna radiata (mung bean),Vigna mungo (urd bean) andArachis hypogea (peanut). The results demonstrated that Rhizobium fromAeschynomene could form nodules only on its homologous host (Aeschynomene) but not on other legumes tested. Secondly, none of the rhizobia of other cross-inoculation groups could nodulateA. aspera.  相似文献   

17.
Rhizobial bacteria nodulate legume roots and fix nitrogen in exchange for photosynthates. These symbionts are infectiously acquired from the environment and in such cases selection models predict evolutionary spread of uncooperative mutants. Uncooperative rhizobia – including nonfixing and non‐nodulating strains – appear common in agriculture, yet their population biology and origins remain unknown in natural soils. Here, a phylogenetically broad sample of 62 wild‐collected rhizobial isolates was experimentally inoculated onto Lotus strigosus to assess their nodulation ability and effects on host growth. A cheater strain was discovered that proliferated in host tissue while offering no benefit; its fitness was superior to that of beneficial strains. Phylogenetic reconstruction of Bradyrhizobium rDNA and transmissible symbiosis‐island loci suggest that the cheater evolved via symbiotic gene transfer. Many strains were also identified that failed to nodulate L. strigosus, and it appears that nodulation ability on this host has been recurrently lost in the symbiont population. This is the first study to reveal the adaptive nature of rhizobial cheating and to trace the evolutionary origins of uncooperative rhizobial mutants.  相似文献   

18.
Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR–RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR–RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N2-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.  相似文献   

19.
Seven bean rhizobial strains EBRI 2, 3, 21, 24, 26, 27 and 29 identified as Rhizobium etli, and EBRI 32 identified as Rhizobium gallicum, isolated from Egyptian soils and which nodulated Phaseolus vulgaris efficiently, were subjected to hybridization with a nifH probe in order to estimate the copy number of this gene. Seven strains (EBRI 2, 3, 21, 24, 26, 27 and 29) which were only able to nodulate Phaseolus vulgaris, contained three copies of the nifH gene, consistent with their identification as Rhizobium etli bv. phaseoli. Only one strain (EBRI 32) which nodulated both Phaseolus vulgaris and Leucaena leucocephala, had one copy of nifH gene. This confirmed the classification of this strain as Rhizobium gallicum bv. gallicum.  相似文献   

20.
Efficient N2-fixing Leguminosae nodulating bacteria resistant to As may facilitate plant growth on As-contaminated sites. In order to identify bacteria holding these features, 24 strains were isolated from nodules of the trap species Crotalaria spectabilis (12) and Stizolobium aterrimum (12) growing on an As-contaminated gold mine site. 16S rRNA gene sequencing revealed that most of the strains belonged to the group of α-Proteobacteria, being representatives of the genera Bradyrhizobium, Rhizobium, Inquilinus, Labrys, Bosea, Starkeya, and Methylobacterium. Strains of the first four genera showed symbiotic efficiency with their original host, and demonstrated in vitro specific plant-growth-promoting (PGP) traits (production of organic acids, indole-3-acetic-acid and siderophores, 1-aminocyclopropane-1-carboxylate deaminase activity, and Ca3(PO4)2 solubilization), and increased resistance to As, Zn, and Cd. In addition, these strains and some type and reference rhizobia strains exhibited a wide resistance spectrum to β-lactam antibiotics. Both intrinsic PGP abilities and multi-element resistance of rhizobia are promising for exploiting the symbiosis with different legume plants on trace-element-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号