首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
When microsomes from feline ventricular muscle are centrifuged on continuous linear sucrose gradients, the major peak for the distribution pattern of the dihydropyridine binding sites corresponds in position and shape with the distribution of the Mr 300K polypeptide marker for junctional sarcoplasmic reticulum (SR). Plasma membrane vesicles are also present in those gradient fractions and appear to be joined to the junctional SR as native dyads. We now report that when such putative dyads are passed through the French press, both the dihydropyridine binding sites and the plasma membrane marker band together at a new isopycnic point distinct from the junctional SR. We conclude that as has been found in the skeletal muscle system the dihydropyridine binding sites are a marker for the junctional domain of the plasma membrane and that separation of the dyad components of the mammalian myocardium can be attained.  相似文献   

2.
The monoclonal antibody, mAb GE 4.90, raised against triadin, a 95 kDa protein of sarcoplasmic reticulum (SR), inhibits the slow phase of Ca2+ release from SR following depolarization of the T-tubule moiety of the triad. The antibody has virtually no effect on the fast phase of depolarization-induced Ca2+ release nor on caffeine-induced Ca2+ release. Since the slow phase of depolarization-induced Ca2+ release is also inhibited by dihydropyridines (DHP), these results suggest that triadin may be involved in the functional coupling between the DHP receptor and the SR Ca2+ channel.  相似文献   

3.
Conventional sarcolemma and microsome preparations from rabbit and cat ventricular muscle were fractionated on continuous linear sucrose gradients. The distribution of nitrendipine receptors was compared with the distribution of organelle specific markers. For the conventional sarcolemma preparation, the dihydropyridine receptor distribution matched the pattern for external membrane markers in position and shape. The number of nitrendipine receptors was three times the number of muscarine binding sites (approximately 1.0 pmol/mg protein) at the isopycnic point of the vesicles. In contrast, two populations of vesicles with nitrendipine receptors were found in the microsome preparations. One population banded with the external membrane vesicles at a mean buoyant density of 24% (w/w) sucrose. The specific content of dihydropyridine receptors (0.2 pmol/mg) was 1/5 that for the muscarine receptors. The second and major population followed the distribution of an Mr 300K polypeptide, a marker for the junctional cisternae of the sarcoplasmic reticulum (SR). Muscarine receptors, however, were also present throughout that band, albeit at a reduced specific content (approximately 0.1 pmol/mg) compared to the light vesicles. The nitrendipine specific content increased over threefold from that of the light vesicles such that the relative content (nitrendipine/muscarine) was twice that determined for the conventional sarcolemma preparation. Nitrendipine receptors were not associated with nonjunctional SR or mitochondria. The light and heavy microsome populations were incubated with 0.2 mg digitonin/mg protein, a treatment which preferentially perturbs the isopycnic point of external membrane vesicles. For the light vesicles, the membranes with muscarine and nitrendipine receptors became heavier than the bulk of the SR. In contrast, after digitonin treatment of the heavy vesicle population, the nitrendipine and muscarine receptors and the SR marker appeared to comigrate into a sharpened band at 39% sucrose. The possibility that the dihydropyridine binding sites in the heavy microsome population are on external membrane vesicles physically linked to the junctional SR is discussed.  相似文献   

4.
Calcium release during excitation-contraction coupling of skeletal muscle cells is initiated by the functional interaction of the exterior membrane and the sarcoplasmic reticulum (SR), mediated by the "mechanical" coupling of ryanodine receptors (RyR) and dihydropyridine receptors (DHPR). RyR is the sarcoplasmic reticulum Ca(2+) release channel and DHPR is an L-type calcium channel of exterior membranes (surface membrane and T tubules), which acts as the voltage sensor of excitation-contraction coupling. The two proteins communicate with each other at junctions between SR and exterior membranes called calcium release units and are associated with several proteins of which triadin and calsequestrin are the best characterized. Calcium release units are present in diaphragm muscles and hind limb derived primary cultures of double knock out mice lacking both DHPR and RyR. The junctions show coupling between exterior membranes and SR, and an apparently normal content and disposition of triadin and calsequestrin. Therefore SR-surface docking, targeting of triadin and calsequestrin to the junctional SR domains and the structural organization of the two latter proteins are not affected by lack of DHPR and RyR. Interestingly, simultaneous lack of the two major excitation-contraction coupling proteins results in decrease of calcium release units frequency in the diaphragm, compared with either single knockout mutation.  相似文献   

5.
Abstract. In muscle cells, excitation–contraction (e–c) coupling is mediated by “calcium release units,” junctions between the sarcoplasmic reticulum (SR) and exterior membranes. Two proteins, which face each other, are known to functionally interact in those structures: the ryanodine receptors (RyRs), or SR calcium release channels, and the dihydropyridine receptors (DHPRs), or L-type calcium channels of exterior membranes. In skeletal muscle, DHPRs form tetrads, groups of four receptors, and tetrads are organized in arrays that face arrays of feet (or RyRs). Triadin is a protein of the SR located at the SR–exterior membrane junctions, whose role is not known. We have structurally characterized calcium release units in a skeletal muscle cell line (1B5) lacking Ry1R. Using immunohistochemistry and freeze-fracture electron microscopy, we find that DHPR and triadin are clustered in foci in differentiating 1B5 cells. Thin section electron microscopy reveals numerous SR–exterior membrane junctions lacking foot structures (dyspedic). These results suggest that components other than Ry1Rs are responsible for targeting DHPRs and triadin to junctional regions. However, DHPRs in 1B5 cells are not grouped into tetrads as in normal skeletal muscle cells suggesting that anchoring to Ry1Rs is necessary for positioning DHPRs into ordered arrays of tetrads. This hypothesis is confirmed by finding a “restoration of tetrads” in junctional domains of surface membranes after transfection of 1B5 cells with cDNA encoding for Ry1R.  相似文献   

6.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

7.
We have studied the subcellular distribution of the alpha 1 and alpha 2 subunits of the dihydropyridine (DHP) receptor and ankyrin in rat skeletal muscle with immunofluorescence and immunogold labeling techniques. All three proteins were concentrated in the triad junction formed between the T-tubules and sarcoplasmic reticulum. The alpha 1 and alpha 2 subunits of the DHP receptor were colocalized in the junctional T-tubule membrane, supporting their proposed association in a functional complex and the possible participation of the alpha 2 subunit in excitation-contraction coupling. Ankyrin label in the triad showed a distribution different from that of the DHP receptor subunits. In addition, ankyrin was found in longitudinally oriented structures outside the triad. Thus, ankyrin might be involved in organizing the triad and in immobilizing integral membrane proteins in T-tubules and the sarcoplasmic reticulum.  相似文献   

8.
Summary Isolated triadic proteins were employed to investigate the molecular architecture of the triad junction in skeletal muscle. Immunoaffinity-purified junctional foot protein (JFP), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), aldolase and partially purified dihydropyridine (DHP) receptor were employed to probe protein-protein interactions using affinity chromatography, protein overlay and crosslinking techniques. The JFP, an integral protein of the sarcoplasmic reticulum (SR) preferentially binds to GAPDH and aldolase, peripheral proteins of the transverse (T)-tubule. No direct binding of JFP to the DHP receptor was detected. The interactions of JFP with GAPDH and aldolase appear to be specific since other glycolytic enzymes associated with membranes do not bind to the JFP. The DHP receptor, an integral protein of the T-tubule, also binds GAPDH and aldolase. A ternary complex between the JFP and the DHP receptor can be formed in the presence of GAPDH. In addition, the DHP receptor binds to a previously undetectedM r 95 K protein which is distinct from the SR Ca2+ pump and phosphorylaseb. TheM r 95 K protein is an integral protein of the junctional domain of the SR terminal cisternae. It is also present in the newly identified strong triads (accompanying paper). From these findings, we propose a new model for the triad junction.  相似文献   

9.
Biochemical approaches toward understanding the mechanism of muscle excitation have in recent years been directed to identification and isolation of proteins of the triad junction. The principal protein described—the junctional foot protein (JFP)—was initially identified by morphological criteria and isolated using antibody-affinity chromatography. Subsequently this protein was described as the ryanodine receptor. It has been isolated and incorporated into lipid bilayers as a cation channel. This in its turn has directed attention toward the transverse (T)-tubular junctional constituents. Three approaches employing the JFP as a probe toward identifying these moieties on the T-tubule are described here. The binding of the JFP to the dihydropyridine receptor, which has been hypothesized to be the voltage sensor in excitation-contraction coupling, is also discussed. The detailed architecture and function of T-tubular proteins remain to be resolved.Abbreviations DHP dihydropyridine - GAPD glyceraldehyde 3-phosphate dehydrogenase - IP3 inositol 1,4,5-trisphosphate - JFP junctional foot protein - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SR sarcoplasmic reticulum - TC terminal cisterna - T-tubule transverse tubule  相似文献   

10.
A monoclonal antibody, GE 4.90, has been produced following immunization of mice with the 95-kDa protein (triadin) of terminal cisternae of rabbit fast skeletal muscle isolated in nondenaturing detergent. The antibody binds to a protein of Mr95K in Western blots of microsomal vesicles electrophoresed in the presence of mercaptoethanol. The greatest intensity of the immunoblot reaction is to enriched terminal cisternae vesicles while little binding is seen to longitudinal reticulum and transverse tubules. The content of antigen in different microsomal subfractions has been estimated by immunoassay: terminal cisternae/triads contain 5.6 micrograms/mg of protein while heavy terminal cisternae contain 32 micrograms/mg. The molar content of triadin in vesicles is approximately the same as that of the ryanodine receptor. When Western blots of gels of terminal cisternae are run in nonreducing conditions, little protein of Mr95K is visible. A number of bands, however, forming a ladder of higher molecular weight are discerned, indicating that the 95-kDa protein forms a disulfide-linked homopolymer. A biotinylated aromatic disulfide reagent (biotin-HPDP) labels the 95-kDa protein, the junctional foot protein, and the Mr 106K protein described by others as a Ca(2+)-release channel (SG 106). This latter protein migrates in gel electrophoresis under nonreducing conditions at a molecular weight different from that of the 95-kDa protein. We did not detect any alteration of binding of the 95-kDa protein to the dihydropyridine receptor or junctional foot protein dependent on the state of oxidation of cysteine residues of either triadin or receptor protein used as the overlay probe.  相似文献   

11.
Microarrays were developed to profile the level of proteins associated with calcium regulation in sarcoplasmic reticulum (SR) isolated from porcine Longissimus muscle. The microarrays consisted of SR preparations printed onto to glass slides and probed with monoclonal antibodies to 7 target proteins. Proteins investigated included: ryanodine receptor, (RyR), dihydropyridine receptor, (DHPR), triadin (TRI), calsequestrin (CSQ), 90 kDa junctional protein (JSR90), and fast-twitch and slow-twitch SR calcium ATPases (SERCA1 and SERCA2). Signal from a fluorescently-labeled detection antibody was measured and quantitated using a slide reader. The microarray developed was also employed to profile Longissimus muscle SR proteins from halothane genotyped animals. Significant (P<0.05) reductions in levels of several proteins were found including: RyR, CSQ, TRI, DHPR and SERCA2 in SR samples from halothane positive animals. The results illustrate the potential of microarrays as a tool for profiling SR proteins and aiding investigations of calcium regulation.  相似文献   

12.
Junctional sarcoplasmic reticulum (SR) has been identified in microsomes from canine ventricular muscle by the presence of calsequestrin and ryanodine-sensitive Ca2+ release channels. These properties, however, are not common to cardiac cells from all species. Seiler et al (1) have recently described a high Mr polypeptide in canine junctional SR similar to the spanning protein subunits of skeletal muscle triads. We now report the existence of a polypeptide with the same mobility in SR from rabbit ventricular muscle and show that those cardiac membranes can associate with transverse (T-) tubules from rabbit skeletal muscle in K cacodylate medium. We propose that this polypeptide and the reaction with T-tubules be considered as criteria for the identification of cardiac junctional SR.  相似文献   

13.
The 95 kDa transmembrane glycoprotein triadin is believed to be an essential component of excitation-contraction coupling in the junctional sarcoplasmic reticulum of skeletal muscle fibers. It is debatable whether triadin mediates intraluminal interactions between calsequestrin and the ryanodine receptor exclusively or whether this junctional protein provides also a cytoplasmic linkage between the Ca2+-release channel and the dihydropyridine receptor. Here, we could show that native triadin exists as disulfide-linked homo-polymers of above 3000 kDa. Under non-reducing conditions, protein bands representing the alpha1-dihydropyridine receptor and calsequestrin did not show an immunodecorative overlap with the extremely high-molecular-mass triadin clusters. Following chemical crosslinking, the ryanodine receptor and triadin exhibited a similarly decreased electrophoretic mobility. However, immunoblotting of diagonal non-reducing/reducing two-dimensional gels clearly demonstrated a lack of overlap between the immunodecorated bands representing triadin, the alpha1-dihydropyridine receptor, the ryanodine receptor and calsequestrin. Thus, in native membranes triadin appears to form large self-aggregates primarily. Although triadin exists in a close neighborhood relationship to the Ca2+-release channel tetramers, it does not seem to be directly linked to the other main triad components implicated in the regulation of the excitation-contraction-relaxation cycle and Ca2+-homeostasis. This agrees with a proposed role of triadin in the maintenance of overall triad architecture.  相似文献   

14.
The ryanodine receptor/junctional channel complex (JCC) forms the calcium release channel and foot structures of the sarcoplasmic reticulum. The JCC and the dihydropyridine (DHP) receptor in the transverse tubule are two of the major components involved in excitation-contraction (E-C) coupling in skeletal muscle. The DHP receptor is believed to serve as the voltage sensor in E-C coupling. Both the JCC and DHP receptor, as well as many skeletal muscle-specific contractile protein genes, are expressed in the BC3H1 muscle cell line. In the present study, we find that during differentiation of BC3H1 cells, induced by mitogen withdrawal, induction of the JCC and DHP receptor mRNAs is temporally similar to that of the skeletal muscle contractile protein genes alpha-tropomyosin and alpha-actin. Our data suggest that there is coordinate regulation of both the contractile protein genes (which have been studied in detail previously) and the genes encoding the calcium channels involved in E-C coupling. Induction of both calcium channels is accompanied by profound changes in BC3H1 cell morphology including the development of many components of mature skeletal muscle cells, despite lack of myoblast fusion. Visualized by electron microscopy, the JCC appears as "foot structures" located in the dyad junction between the plasmalemma and the sarcoplasmic reticulum of the BC3H1 cells. Development of foot structures is concomitant with JCC mRNA expression. Expression of the JCC and DHP receptor mRNAs and formation of the foot structures are inhibited specifically by fibroblast growth factor.  相似文献   

15.
The sarcoplasmic reticulum (SR) plays a critical role in excitation-contraction coupling by regulating the cytoplasmic calcium concentration of striated muscle. The histidine-rich calcium-binding protein (HRCBP) is expressed in the junctional SR, the site of calcium release from the SR. HRCBP is expressed exclusively in muscle tissues and binds calcium with low affinity and high capacity. In addition, HRCBP interacts with triadin, a protein associated with the ryanodine receptor and thought to be involved in calcium release. Its calcium binding properties, localization to the SR, and interaction with triadin suggest that HRCBP is involved in calcium handling by the SR. To determine the function of HRCBP in vivo, we inactivated HRC, the gene encoding HRCBP, in mice. HRC knockout mice exhibited impaired weight gain beginning at 11 months of age, which was marked by reduced skeletal muscle and fat mass, and triadin protein expression was upregulated in the heart of HRC knockout mice. In addition, HRC null mice displayed a significantly exaggerated response to the induction of cardiac hypertrophy by isoproterenol compared to their wild-type littermates. The exaggerated response of HRC knockout mice to the induction of cardiac hypertrophy is consistent with a regulatory role for HRCBP in calcium handling in vivo and suggests that mutations in HRC, in combination with other genetic or environmental factors, might contribute to pathological hypertrophy and heart failure.  相似文献   

16.
To compare surface sarcolemmal with T-tubular distributions of [3H]saxitoxin (STX)- and [3H]nitrendipine (NTD)-binding sites, we centrifuged membrane vesicles from sheep and bovine ventricles on a 10-40% linear sucrose gradient from which fractions were assayed for STX and NTD binding; for markers of surface sarcolemma (ouabain-sensitive Na,K-ATPase activity, [3H]quinuclidinyl benzilate binding); and for markers of junctional sarcoplasmic reticulum known to be preferentially associated with T-tubules (ryanodine-sensitive Ca2+ uptake, calsequestrin, an Mr 300,000 putative phosphorylatable "foot" protein, and electron microscopically visible junctional sarcoplasmic reticulum-plasmalemma complexes). We identified three distinct peaks in the sucrose gradient, each characterized by significant high and low affinity STX- and high affinity NTD-binding: Peak I (approximately 19% sucrose), highly enriched in surface sarcolemma; Peak III (approximately 36% sucrose), enriched in junctional sarcoplasmic reticulum markers and hence in junctional sarcoplasmic reticulum complexes with T-tubule; and Peak II (approximately 27% sucrose), showing greatest specific STX binding and only moderate NTD binding, enriched in T-tubular membrane, unassociated with junctional sarcoplasmic reticulum. For ventricular myocytes, the ratio NTD sites/STX sites was 2.5 for surface sarcolemma, but only approximately 1.0 for T-tubules. Unlike data published for mammalian skeletal muscle, sheep and beef cardiac NTD receptors were not significantly more concentrated in T-tubular than in surface plasmalemma.  相似文献   

17.
Junctional transverse tubules (TT) isolated from triads of rabbit skeletal muscle by centrifugation in an ion-free sucrose gradient were compared with membrane subfractions, predominantly derived from the free portion of TT, that had been purified from sarcoplasmic reticulum membrane contaminants by three different methods. The markers used were diagnostic membrane markers and the dihydropyridine (DHP) receptor, which is a specific marker of the junctional membrane of TT. Junctional TT have a high membrane density (Bmax. 60 pmol/mg of protein) of high-affinity (Kd 0.25 nM) DHP-binding sites using [3H]PN200-110 as the specific ligand. When analysed by SDS/PAGE under reducing conditions and by Western blot techniques, the TT were found to contain a concanavalin A-binding 150 kDa glycoprotein which probably corresponds to the alpha 2-subunit of the DHP receptor. This conclusion was supported by correlative immunoblot experiments with a specific antibody. Junctional TT are further distinguished from free TT by the presence of a high number (Bmax. 20 pmol/mg of protein) of [3H]cyclic AMP receptor sites, as determined by the Millipore filtration technique of Gill & Walton [(1974) Methods Enzymol. 38, 376-381]. Use of this method means that the number of receptors may have been underestimated. The TT-bound cyclic AMP receptor was identified as a 55 kDa protein by specific photoaffinity labelling with 8-N3-[3H]cyclic AMP, and had similar phosphorylation properties and apparent molecular mass to the RII form of the regulatory subunit of cyclic AMP-dependent protein kinase. Co-localization of the intrinsic cyclic AMP-dependent protein kinase and of the DHP receptor complex to the junctional membrane of TT supports the hypothesis that the 170 kDa alpha 1-subunit of the receptor is a substrate for the kinase.  相似文献   

18.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

19.
20.
Excitation-contraction in muscle fibers are coupled through a complex mechanism involving multiproteic components located at a specialized cellular site, the triadic junction. Triads in normal muscle fiber result from the apposition of sarcoplasmic reticulum citernae and T-tubule and possess strikingly organized ultrastructural elements, bridging both types of membranes, the "junctional feet". Muscular dysgenesis in the mouse is characterized by total muscle inactivity in the developing skeletal muscles due to excitation-contraction uncoupling. Triads have been found to be disorganized with no "junctional feet" and dihydropyridine (DHP) binding sites are decreased with no slow Ca2+ currents, suggesting a basic defect in the excitation-contraction coupling machinery itself. We may hypothesize that muscular dysgenesis results in a marked defect in a functional protein involved in the morphogenesis of the triad and/or directly involved in Ca2+ release for contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号