首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a brief period of biotrophic growth, the anthracnose fungus Colletotrichum lindemuthianum (Sacc. et Mgn.) Bri et Cav. develops extensively in bean leaf cells, causing severe wall alterations and death of the host protoplast. Aplysia gonad lectin, a polygalacturonic acid-binding agglutinin, was complexed to gold and used to study the extent of pectin breakdown during the necrotrophic phase of the infection process. In view of its specific binding properties for the endopolygalacturonase produced by C. lindemuthianum, a polygalacturonase-inhibiting protein isolated from bean cell walls was successfully tagged with gold particles and used for localizing the sites of enzyme accumulation in infected host tissues. The basal level of endopolygalacturonase produced by C. lindemuthianum grown in culture was found to increase severalfold when the fungus developed in host plant tissues. The enzyme was able to diffuse freely in the host cell wall, causing drastic degradation of the pectic material of primary walls and middle lamella matrices. The enzymatic alteration of plant cell walls was accompanied by the release of pectic fragments and by the accumulation of pectic molecules at specific sites, such as intercellular spaces and aggregated cytoplasm of infected host cells. The occurrence of pectic molecules at those sites where fungal growth is likely to be restricted is discussed in relation to their origin and their implication in the plant's defense system.  相似文献   

2.
Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a synthetic chemical, was applied as a foliar spray to tomato (Lycopersicon esculentum) plants and evaluated for its potential to confer increased resistance against the soil-borne pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL). In nontreated tomato plants all root tissues were massively colonized by FORL hyphae. Pathogen ingress toward the vascular stele was accompanied by severe host cell alterations, including cell wall breakdown. In BTH-treated plants striking differences in the rate and extent of fungal colonization were observed. Pathogen growth was restricted to the epidermis and the outer cortex, and fungal ingress was apparently halted by the formation of callose-enriched wall appositions at sites of fungal penetration. In addition, aggregated deposits, which frequently established close contact with the invading hyphae, accumulated in densely colonized epidermal cells and filled most intercellular spaces. Upon incubation of sections with gold-complexed laccase for localization of phenolic-like compounds, a slight deposition of gold particles was observed over both the host cell walls and the wall appositions. Labeling was also detected over the walls of fungal cells showing signs of obvious alteration ranging from cytoplasm disorganization to protoplasm retraction. We provide evidence that foliar applications of BTH sensitize susceptible tomato plants to react more rapidly and more efficiently to FORL attack through the formation of protective layers at sites of potential fungal entry.  相似文献   

3.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

4.
Commercial chitosan and laminarin, as well as -glucans, isolated from either Phytophthora megasperma f.sp. glycinea or Saccharomyces cerevisiae, were applied to decapitated tomato (Lycopersicon esculentum Mill.) plants and evaluated for their potential to induce defense mechanisms in root tissues infected by Fusarium oxysporum f.sp. radicis-lycopersici. A significant decrease in disease incidence was monitored in elicitor-treated plants as compared to water-treated plants. No difference was detected in the capacity of the elicitors under study to confer enhanced protection against pathogen attack. Ultrastructural investigations of the infected root tissues from watertreated (control) plants showed a rapid colonization of all tissues including the vascular stele. Fungal ingress was lways associated with marked host cell disorganization and cell wall alteration. In root tissues from elicitortreated plants, restriction of fungal growth to the epidermis and the outer cortex, decrease in pathogen viability, and formation of numerous wall appositions at sites of attempted penetration were the main features of the hostpathogen interaction. The wall appositions were found to vary greatly in their appearance from multi-textured to multi-layered structures, from elongated deposits to hemispherical protuberances. Application of various goldcomplexed probes to root tissue sections revealed that callose, pectin and phenolic-like compounds (likely lignin) were the main components of the newly-formed barriers. By contrast, cellulose appeared confined to outer or intermediate layers resembling the host cell wall in terms of structure and architecture. In the absence of fungal challenge, the cytologically visible consequences of elicitation were restricted to a discrete deposition of electron-opaque substances in the vacuoles of some cells, and wall appositions were not detected. The key importance of fungal challenge in the elaboration of defense mechanisms is discussed in relation to the possibility that an alarm ignal provided by the pathogen itself is required for the expression of resistance in plants previously sensitized by an exogenous elicitor.Abbreviations AGL Aplysia gonad lectin - FORL Fusariumoxysporum f.sp. radicis-lycopersici The authors wish to thank Sylvain Noël for excellent technical assistance and Drs. J.P. Geiger and Michel Nicole (ORSTOM, Montpellier, France) for providing the purified laccase. This work was supported by a grant from the FCAR-CQVB (Fonds Québécois pour la Formation de Chercheurs et l'Aide à la Recherche and Centre Québécois de Valorisation de la Biomasse) and by a contract from the Company Tourbières Premier Ltée, Rivière-du-Loup, Québec.  相似文献   

5.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

6.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   

7.
Innate immunity is the first line of host defense against invading pathogens, and it is recognized by a variety of pattern recognition molecules, including mannose-binding lectin (MBL). MBL binds to mannose and N-acetylglucosamine residues present on the glycopolymers of microorganisms. Human serum MBL functions as an opsonin and activates the lectin complement pathway. However, which glycopolymer of microorganism is recognized by MBL is still uncertain. Here, we show that wall teichoic acid of Staphylococcus aureus, a bacterial cell surface glycopolymer containing N-acetylglucosamine residue, is a functional ligand of MBL. Whereas serum MBL in adults did not bind to wall teichoic acid because of an inhibitory effect of anti-wall teichoic acid antibodies, MBL in infants who had not yet fully developed their adaptive immunity could bind to S. aureus wall teichoic acid and then induced complement C4 deposition. Our data explain the molecular reasons of why MBL-deficient infants are susceptible to S. aureus infection.  相似文献   

8.
9.
A soluble elicitor of glyceollin accumulation was released from insoluble mycelial walls of Phytophthora megasperma var. sojae after incubation with soybean cotyledon tissue for as little as 2 minutes. Various enzymic and chemical treatments of the released elicitor indicated that the activity resided in a carbohydrate moiety, and gel filtration disclosed the presence of at least two active molecular species. Cell-free extracts from soybean cotyledons or hypocotyls also released soluble elicitors from fungal cell walls that were similar to those released by living cotyledon tissue. These results may suggest that contact of fungal pathogens with host tissues is required to release fungal wall elicitors which then initiate phytoalexin accumulation in the plant.  相似文献   

10.
Fusarium oxysporum f. sp. vasinfectum penetration hyphae infect living cells in the meristematic zone of cotton (Gossypium barbadense L.) roots. We characterized wall modifications induced by the fungus during infection of the protodermis using antibodies against callose, arabinogalactan-proteins, xyloglucan, pectin, polygalacturonic acid and rhamnogalacturonan I in high-pressure frozen, freeze-substituted root tissue. Using quantitative immunogold labelling we compared the cell walls before and after hyphal contact, cell plates with plasmodesmata during cytokinesis, and wall appositions induced by fungal contact. In the already-existing wall, fungal contact induced only minor modifications such as an increase of xyloglucan epitopes. Wall appositions mostly exhibited epitopes similar to the cell plate except that wall appositions had a much higher callose content. This study shows that wall appositions induced by Fusarium oxysporum hyphae are the result of normal cell wall synthesis and the addition of large amounts of callose. The appositions do not stop fungal growth.  相似文献   

11.
The potential of chitosan, a non-toxic and biodegradable polymer of beta -1,4-glucosamine, for controlling fusarium crown and root rot of greenhouse-grown tomato caused by Fusarium oxysporum f.sp. radicis-lycopersici (FORL) was investigated. The amendment of plant growth substratum with chitosan at concentrations of 12.5 or 37.5 mg l-1 significantly reduced plant mortality, root rot symptoms and yield loss attributed to FORL. Maximum disease control was achieved with chitosan at 37.5 mg l-1, when plant mortality was reduced by more than 90% and fruit yield was comparable with that of non-infected plants. In the absence of FORL, chitosan did not adversely affect plant growth and fruit yield. Cytological observations on root samples from FORL-inoculated plants revealed that the beneficial effect of chitosan in reducing disease was associated with increased plant resistance to fungal colonization. In chitosan-treated plants, fungal growth was restricted to the epidermis and the cortex. Invading hyphae showed marked cellular disorganization, characterized by increased vacuolation and even complete loss of the protoplast. The main host reactions included the formation of structural barriers at sites of attempted fungal penetration, the deposition of an opaque material (probably enriched with phenolics according to its electron density) in intercellular spaces and the occlusion of xylem vessels with tyloses, polymorphic bubbles and osmiophilic substances. Although chitosan may also have antifungal properties, the ultrastructural observations provide evidence that chitosan sensitizes tomato plants to respond more rapidly and efficiently to FORL attack. Chitosan has the potential to become a useful agent for controlling greenhouse diseases caused by soil-borne pathogens.  相似文献   

12.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

13.
We report the development of a cytochemical affinity technique for detection of galacturonic acids at the ultrastructural level. The highly purified gonad lectin from Aplysia depilans (AGL) was tagged with colloidal gold particles and used for labeling carbohydrates in resin-embedded sections of various plant and fungal tissues. Patterns of AGL binding sites were compared to those obtained with a D-galactose-specific lectin, Ricinus communis agglutinin I. Differences in labeling patterns were noted, indicating that the lectins exhibited differential carbohydrate binding. In addition, the considerable loss of labeling over isolated wheat coleoptile walls treated for removal of pectin, after incubation with the AGL-gold complex, strongly suggested an affinity of AGL for pectic substances. A series of cytochemical controls, including sugar inhibition tests, has proven the specificity of the technique and the high affinity of AGL towards galacturonic acids. The potential value of this new lectin for ultrastructural studies on cell wall pectic substances in plant biology and pathology is demonstrated.  相似文献   

14.
Little is known about the amount of fungal biomass in the phyllosphere of bryophytes compared to higher plants. In this study, fungal biomass associated with the phyllosphere of three bryophytes (Hylocomium splendens, Pleurozium schreberi, Polytrichum commune) and three vascular plants (Avenella flexuosa, Gymnocarpium dryopteris, Vaccinium myrtillus) was investigated using ergosterol content as a proxy for fungal biomass. Phyllosphere fungi accounted for 0.2-4.0 % of the dry mass of moss gametophytes, representing the first estimation of fungal biomass associated with bryophytes. Significantly more fungal biomass was associated with the phyllosphere of bryophytes than co-occurring vascular plants. The ergosterol present in moss gametophytic tissues differed significantly between species, while the ergosterol present in vascular plant leaf tissues did not. The photosynthetic tissues of mosses had less associated fungal biomass than their senescent tissues, and the magnitude of this difference varied in a species-specific manner. The fungal biomass associated with the vascular plants studied varied significantly between localities, while that of mosses did not. The observed differences in phyllosphere community biomass suggest their size could be affected by host anatomical and physiological attributes, including micro-niche availability and chemical host defenses, in addition to abiotic factors like moisture and nutrient availability.  相似文献   

15.
The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation pathways of complement in fighting streptococcal infection, little is known about the role of the lectin pathway, mainly due to the lack of appropriate experimental models of lectin pathway deficiency. We have recently established a mouse strain deficient of the lectin pathway effector enzyme mannan-binding lectin associated serine protease-2 (MASP-2) and shown that this mouse strain is unable to form the lectin pathway specific C3 and C5 convertases. Here we report that MASP-2 deficient mice (which can still activate complement via the classical pathway and the alternative pathway) are highly susceptible to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse ficolin A, human L-ficolin, and collectin 11 in both species, but not mannan-binding lectin (MBL), are the pattern recognition molecules that drive lectin pathway activation on the surface of S. pneumoniae. We further show that pneumococcal opsonisation via the lectin pathway can proceed in the absence of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci.  相似文献   

16.
Active defense in plants is associated with marked metabolic alterations, but little is known about the exact role of the reported changes in specific activity of several enzymes in infected plant tissues. β-Fructosidase (invertase), the enzyme that converts sucrose into glucose and fructose, increases upon infection by fungi and bacteria. To understand the relationship between fungal growth and β-fructosidase accumulation, we used an antiserum raised against a purified deglycosylated carrot cell wall β-fructosidase to study by immunogold labeling the spatial and temporal distribution of the enzyme in susceptible and resistant tomato (Lycopersicon esculentum) root tissues infected with the necrotrophic fungus, Fusarium oxysporum f. sp. racidis-lycopersici. In susceptible plants, the enzyme started to accumulate in host cell walls about 72 hours after inoculation. Accumulation occurred only in colonized cells and was mainly restricted to areas where the walls of both partners contacted each other. In resistant plants, accumulation of β-fructosidase was noticeable as soon as 48 hours after inoculation and appeared to reach an optimum by 72 hours after inoculation. Increase in wall-bound β-fructosidase was not restricted to infected cells but occurred also, to a large extent, in tissues that remained uncolonized during the infection process. The enzyme also accumulated in wall appositions (papillae) and intercellular spaces. This pattern of enzyme distribution suggests that induction of β-fructosidase upon fungal infection is part of the plant's defense response. The possible physiological role(s) of this enzyme in infected tomato plants is discussed in relation to the high demand in energy and carbon sources during pathogenesis.  相似文献   

17.
18.
《Fungal Biology Reviews》2020,34(3):115-125
Plants harbor a wide diversity of microorganisms in their tissues. Some of them have a long co-evolutionary history with their hosts, likely playing a pivotal role in regulating the plant interaction with other microbes such as pathogens. Some cool-season grasses are symbiotic with Epichloë fungal endophytes that grow symptomless and systemically in aboveground tissues. Among the many benefits that have been ascribed to endophytes, their role in mediating plant interactions with pathogens has been scarcely developed. Here, we explored the effects of Epichloë fungal endophytes on the interaction of host grasses with fungal pathogens. We made a meta-analysis that covered a total of 18 host grass species, 11 fungal endophyte species, and 22 fungal pathogen species. We observed endophyte-mediated negative effects on pathogens in vitro and in planta. Endophyte negative effects on pathogens were apparent not only in laboratory but also in greenhouse and field experiments. Epichloë fungal endophytes had negative effects on pathogen growth and spores' germination. On living plants, endophytes reduced both severity and incidence of the disease as well as colonization and subsequent infection of seeds. Symbiosis with endophytes showed an inhibitory effect on debilitator and killer pathogens, but not on castrators, and this effect did not differ among biotrophic or necrotrophic lifestyles. We found that this protection can be direct through the production of fungistatic compounds, the competition for a common resource, or the induction of plant defenses, and indirect associated with endophyte-generated changes in the abiotic or the biotic environment. Several mechanisms operate simultaneously and contribute differentially to the reduction of disease within grass populations.  相似文献   

19.
The potential of Bacillus pumilus (PGPR strain SE 34), either alone or in combination with chitosan, for inducing defense reactions in tomato (Lycopersicon esculentum Mill.) plants inoculated with the vascular fungus, Fusarium oxysporum f. sp. radicis-lycopersici, was studied by light and transmission electron microscopy and further investigated by gold cytochemistry. The key importance of fungal challenge in the elaboration of defense mechanisms is discussed in relation to the possibility that an alarm signal provided by the pathogen itself is required for the expression of resistance in plants previously sensitized by biotic agents. Ultrastructural investigations of the infected root tissues from water-treated (control) plants showed a rapid colonization of all tissues including the vascular stele. In root tissues from bacterized tomato plants grown in the absence of chitosan, the limited fungal development coincided with marked changes in the host physiology. The main facets of the altered host metabolism concerned the induction of a structural response at sites of fungal entry and the abnormal accumulation of electron-dense substances in the colonized areas. A substantial increase in the extent and magnitude of the cellular changes induced by B. pumilus was observed when chitosan was supplied to bacterized tomato plants. These changes were characterized by a considerable enlargement of the callose-enriched wall appositions deposited onto the inner cell wall surface in the epidermis and the outer cortex. The use of the wheat germ agglutinin-ovomucoid-gold complex provided evidence that the wall-bound chitin component in Fusarium cells colonizing bacterized tomato roots was not substantially altered. One of the most-typical fungal cell reactions, observed only when bacterized tomato plants were grown in the presence of chitosan, was the formation of abnormal chitin-enriched deposits between the retracted plasma membrane and the cell wall. Results of the present study provide the first evidence that combination of biocontrol approaches is a promising step towards elaborating integrated pest management programmes. Received: 6 June 1997 / Accepted: 8 July 1997  相似文献   

20.
Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.Studies of plant-pathogen interactions strongly suggest that under the pressure to survive, plants and pathogens continuously react to one another''s defense arsenal and evolve to overcome these defenses (13). Plants recognize pathogen-associated molecular patterns, such as fungal cell wall fragments composed of chitin, glucans, oligosaccharides, or glycoprotein peptides (32). It has been established that pathogens evolved effector proteins to avoid plant surveillance mechanisms that recognize pathogen-associated molecular patterns and this in turn led to the evolution of plant surveillance mechanisms that recognize pathogen-specific effector proteins. All pathogen recognition mechanisms induce intracellular signaling that culminates in the synthesis of factors, such as antimicrobial plant proteins, that help in limiting the severity of infection (74). The antimicrobial proteins are therefore among the ultimate effectors of plant defense. There is evidence of recognition between plant antimicrobial proteins and pathogen-specific molecules (74). Therefore, pathogen mechanisms of resistance to the antimicrobial proteins and the antimicrobial proteins themselves must have coevolved. Consequently, we postulated that a screen for fungal genes that alter the sensitivity of a phytopathogen to an antifungal protein of the host plant (that is, a cognate plant defense effector) would lead to identification of genes involved in controlling pathogenicity, in controlling access of the antifungal protein to its target fungal molecules (such as genes controlling cell surface composition), and in controlling detoxification mechanisms.The plant antifungal protein selected to test this hypothesis was osmotin. Osmotin is an antifungal protein that is overexpressed in and secreted by salt-adapted cultured tobacco (Nicotiana tabacum) cells (63). It is a member of a family of ubiquitous plant proteins, referred to as plant pathogenesis-related proteins of family 5 (PR-5), that are implicated in defense against fungi (74). Osmotin gene and protein expression is induced by biotic stresses, and overexpression of osmotin delays development of disease symptoms in transgenic plants (41, 42, 43, 84). The genetic bases of the susceptibility and resistance of Saccharomyces cerevisiae to osmotin have been explored in our laboratory (49, 50). The results show that specific interactions of osmotin with the plasma membrane are responsible for cell death signaling. However, because the cell wall governs access of osmotin to the plasma membrane, differences in cell wall composition largely account for the differential osmotin sensitivity of various S. cerevisiae strains, and specific cell wall components play a significant role in modulating osmotin toxicity (30, 31, 49, 50, 81, 82). These studies in the model nonpathogenic fungus, S. cerevisiae, support our hypothesis that a screen for genes that alter the sensitivity of a phytopathogenic fungus to an antifungal defense effector protein of the host plant will uncover genes involved in controlling access of the antifungal protein to its target fungal molecules.Osmotin, like other plant defense antifungal proteins, has specific but broad-spectrum antifungal activity (74). One of the most osmotin-sensitive phytopathogenic fungi is Fusarium oxysporum. F. oxysporum is an ascomycete fungus, like S. cerevisiae, and has been touted as an appropriate multihost model for studying fungal virulence (53). It is a soilborne plant pathogen of economic significance, because it causes vascular wilt disease on a large variety of crop plants and produces toxic food contaminants (17, 58). In humans it also causes skin, nail, and eye disease that can become serious or life-threatening illnesses in immunocompromised patients (52, 69). F. oxysporum f. sp. lycopersici, F. oxysporum f. sp. nicotianae, and F. oxysporum f. sp. meloni, like S. cerevisiae, are quite sensitive to osmotin (1, 51; M. L. Narasimhan, unpublished data). Furthermore, it was recently shown that overexpression in F. oxysporum f. sp. nicotianae of an S. cerevisiae cell wall glycoprotein that increases the osmotin resistance of S. cerevisiae also increases the osmotin resistance of the plant pathogen and its virulence on tobacco, the osmotin-producing host plant (51). This suggested that osmotin resistance mechanisms may be conserved between S. cerevisiae and F. oxysporum and that S. cerevisiae could be used as a tool to uncover F. oxysporum genes that control osmotin sensitivity or resistance.In the current study, we expressed an F. oxysporum f. sp. nicotianae cDNA library in the osmotin-sensitive S. cerevisiae strain BWG1-7a and selected genes for their ability to increase osmotin tolerance. We report here the identification and characterization of three FOR (Fusarium Osmotin Resistance) genes that affect the cell wall in S. cerevisiae. The product of FOR1 has homology with a putative cell surface glycoprotein; FOR2 encodes glutamine:fructose-6-phosphate amidotransferase (GFAT), an enzyme that catalyzes the first step in the biosynthetic pathway leading to amino sugar-containing macromolecules, such as glycoproteins and chitin (64); and FOR3 has high homology with S. cerevisiae SSD1, a gene that controls cell wall composition and virulence (31, 78). FOR2 and FOR3 are the functional equivalents of the corresponding S. cerevisiae genes. Our parallel analysis using two model fungi verifies the notion that cell wall proteins play a critical role in determining the sensitivity/resistance of fungi to osmotin. In addition, these results implicate that the tobacco defense protein, osmotin, can serve as an effective/useful tool in identifying genes that control cell wall composition not only in a model fungus, such as S. cerevisiae, but also in phytopathogenic fungi, such as F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号