首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用显微操作仪将小鼠精子注入家兔卵母细胞的胞质内和透明带下,对鼠兔异种精卵互作和异种受精胚胎的发育进行了研究,并对注射精子的数量及卵的体外成熟时间等影响鼠兔异种显微受精的因素进行了探讨,结果如下:(1)将小鼠精子分别注入兔卵胞质内和透明带下,均能激活兔卵母细胞,导致精核解聚和原核形成;(2)小鼠精子注入兔卵胞质内和透明带下受精,杂种胚胎体外培养能发育到8-细胞期;(3)鼠兔异种受精4-细胞胚胎染色体标本制备观察结果表明,它们为正常二倍体;(4)鼠兔异种受精4-细胞胚胎的超微结构观察结果表明,它们极近似兔正常4-细胞胚胎的超微结构;(5)将小鼠精子注入兔卵透明带下,注射5—10个精子组卵的受精率(32.4%)和卵裂率(16.2%)均高于注射单个精子组的,但二组间差异不显著(P>0.05);DM 15%NCS液中体外成熟培养11—12h兔卵透明带下注入1—2个小鼠精子后的受精率(42.3%)和卵裂率(30.8%)均高于体外成熟培养24—25h组的,但二组间差异未达到显著水平(P>0.05)。  相似文献   

2.
哺乳动物精子在雌性生殖道内及体外获能培养过程中伴随着胆固醇外流、质膜重组、离子通道调节及获能相关蛋白磷酸化状态改变等相关生理调节过程,其中信号通路及相应信号分子对精子获能及功能修饰起到重要调节作用,成为精子细胞超激活运动及完成受精作用的关键环节。根据近年来的研究报道,对哺乳动物精子获能过程中已知的信号通路、信号分子及调节因子、离子通道、存在的问题及未来研究主要方向进行综述,为精子体外培养及辅助生殖等提供理论参考。  相似文献   

3.
肝素处理山羊精子体外获能的研究   总被引:9,自引:0,他引:9       下载免费PDF全文
系统研究了作用浓度、时间和温度以及输卵管上皮细胞和卵丘细胞对肝素处理山羊精子体外获能后的精子活力、质膜完整性、顶体完整率、获能比例及受精和卵裂的影响,为改善山羊精子体外获能效果和研究获能机理提供了必要的数据。主要实验结果如下:1、在获能液中添加5、10、25、50和100μg/mL肝素处理45min时,添加50和100μg/mL肝素精子获能比率最高(分别为55%和56%),但添加100μg/mL肝素处理后顶体完整率明显(P<0.05)低于对照组。说明山羊精子获能的最佳肝素浓度为50μg/mL。2、肝素作用时间(0, 10, 20, 30, 45, 60 和120 min)的延长,获能精子比例逐渐提高。其中,肝素处理45~120 min各组的获能精子比例差异不显著(P>0.05),处理120 min组的精子活力和质膜完整率显著低于其它各组。说明50μg/mL肝素处理精子获能的最佳时间是45~60 min。3、在42℃和38.5℃下处理时,获能精子比例显著高于15℃和37℃,但42℃处理后精子活力和顶体完整率显著低于其它温度。因此,385℃为山羊精子获能的最佳温度。4、与输卵管上皮细胞共培养获能精子比例显著高于对照组和卵丘细胞组,但精子活力、质膜完整率和顶体完整率差异不显著。输卵管上皮组的受精率(91.3%)和卵裂率(72.2%)显著高于对照组(81.2%,65.0%)。说明与输卵管上皮细胞共培养能显著提高肝素处理山羊精子体外获能的效果。  相似文献   

4.
蛋白质的表达、修饰及相互作用的研究已成为后基因组学时代蛋白质组学中的重要内容。蛋白质磷酸化和去磷酸化作为最普遍的翻译后修饰之一,是精子细胞信号转导和酶调控、表达的主要分子机制,亦是精子、卵细胞信号识别及完成受精作用的关键环节。对精子磷酸化蛋白功能的研究有助于深入理解精子的获能、超激活运动的维持、发生顶体反应及精卵结合等受精过程的分子调控机理。对哺乳动物精子磷酸化蛋白质组学的研究进展,包括动物精子磷酸化蛋白质组学研究的技术方法、磷酸化蛋白质种类的鉴定、定量及其功能分析进行了综述,为进一步发掘与受精相关的重要生物标志物,揭示精子发育、繁殖潜能变化及受精分子机理奠定基础。  相似文献   

5.
该文研究了丙烯酰胺在体外对人成熟精子功能的影响。不同浓度(0,2,10,50,250,1 000μmol/L)的丙烯酰胺溶液在体外处理人成熟精子,利用伊红苯胺黑染色、计算机辅助精子分析系统、金霉素染色、精子单细胞钙成像等方法检测精子活力、运动、获能、顶体反应和胞内钙动员等生理功能。结果显示,不同浓度的丙烯酰胺溶液对人成熟精子活率、运动、获能、顶体反应以及胞内钙动员等生理功能均未有显著影响。推测丙烯酰胺体外急性染毒在短时间内并不抑制人成熟精子功能。  相似文献   

6.
为了阐明进化蕨类受精作用的特点和细胞学机制,该文采用透射电镜观察了蕨(Pteridium aquilinum var.latiusculum)受精作用的主要过程,观察结果显示:(1)蕨精子通过受精孔进入卵细胞,多数情况下,该精子的螺旋运动先在受精孔的下方产生一个受精腔,然后精子再与卵细胞质融合。(2)第一个精子的这种延迟的螺旋运动和因精子的钻入而引起的卵细胞固缩反应可能是阻止多精受精的重要因素。(3)卵发育时期产生的核外突在受精后仍能持续12h,然后与核本体分离,逐渐在细胞质中消解。(4)合子通过其后方细胞质的液泡化而建立了水平极性,此后再进行细胞分裂。该研究观察到了进化蕨类受精作用过程中的一些新现象,包括产生受精腔、卵细胞固缩反应、核外突的命运以及合子极性建立等,这有助于理解蕨类植物的受精作用机制及有性生殖的演化。  相似文献   

7.
选择活率高的精子并进行体外获能是开展猕猴体外受精研究的必要程序,是研究猕猴受精生物学的重要手段。本实验采用上浮法和Percoll梯度离心法对猕猴精液进行了优选,并对处理后的精子形态正常率、精子活率、密度及受精率作了比较,发现二差异不显;用dbcAMP和咖啡因使精子获能,发现只有两种获能剂同时存在才能使猕猴精子获能并使卵母细胞受精。结论为:上浮法和Percoll法都是有效的精子优选法,对受精率的影响差异不显;dbcAMP和咖啡因在猕猴精子体外获能时缺一不可。  相似文献   

8.
为了阐明进化蕨类受精作用的特点和细胞学机制,该文采用透射电镜观察了蕨(Pteridium aquilinum var.latiusculum)受精作用的主要过程,观察结果显示:(1)蕨精子通过受精孔进入卵细胞,多数情况下,该精子的螺旋运动先在受精孔的下方产生一个受精腔,然后精子再与卵细胞质融合。(2)第一个精子的这种延迟的螺旋运动和因精子的钻入而引起的卵细胞固缩反应可能是阻止多精受精的重要因素。(3)卵发育时期产生的核外突在受精后仍能持续12 h,然后与核本体分离,逐渐在细胞质中消解。(4)合子通过其后方细胞质的液泡化而建立了水平极性,此后再进行细胞分裂。该研究观察到了进化蕨类受精作用过程中的一些新现象,包括产生受精腔、卵细胞固缩反应、核外突的命运以及合子极性建立等,这有助于理解蕨类植物的受精作用机制及有性生殖的演化。  相似文献   

9.
汪斌  刘志宇  苗龙 《遗传》2008,30(6):677-686
秀丽线虫精子发生过程包括减数分裂和精子活化两个阶段, 通过早期特异基因的表达和后期蛋白分子的翻译后修饰, 精原细胞发育成为具有运动能力的精子。其受精阶段包括精子运动、精子竞争、精卵信号通讯以及精卵融合等过程。通过突变体筛选目前已经获得了一些影响精子发生或受精的突变体, 并且对其中一些突变体进行了基因克隆和功能分析的研究。这些研究不仅对于阐明精子发生和受精的机理具有重大的理论意义, 而且对男性不育的治疗和男性无毒避孕药物的研发可能提供重要的依据。文章阐述了目前在线虫精子发生和精子受精两个方面的研究进展。  相似文献   

10.
大熊猫与金黄地鼠体外异种受精的研究   总被引:4,自引:4,他引:0  
陈大元  何光昕 《动物学报》1989,35(4):376-380
在大熊猫精子与地鼠卵的体外异种受精中,发现大熊猫精子穿入地鼠卵后可以激活受精卵产生极区,释放第二极体,受精卵内雌性原核形成。与此同时,地鼠卵的胞质也能促使大熊猫精子头发育成雄性原核,异种精卵间的相互作用与同种受精的相似。 细胞松弛素B能阻抑大熊猫雄性原核从地鼠卵皮层迁移到卵的中央,实验表明大熊猫雄性原核的迁移也受异种卵的微丝的控制。  相似文献   

11.
Ca^2+与植物抗旱性的关系   总被引:20,自引:0,他引:20  
关军锋  李广敏 《植物学通报》2001,18(4):473-478,458
干旱是制约植物生长发育的主要逆境因素,并抑制根系对钙的吸收,近年来研究表明,外源钙能提高植株的抗旱性,抑制早旱胁迫下活性氧物质的生成,保护细胞质膜的结构,维持正常的光合作用,以及调节激素和一些重要的生化物质代放,此外,细胞内Ca^2 可作为第二信使传递干旱信号,调节干旱胁迫导致的生理反应。  相似文献   

12.
Ca2+与植物抗旱性的关系   总被引:1,自引:0,他引:1  
关军锋  李广敏 《植物学报》2001,18(4):473-478
干旱是制约植物生长发育的主要逆境因素,并抑制根系对钙的吸收。近年来研究表明,外源钙能提高植株的抗旱性,抑制干旱胁迫下活性氧物质的生成,保护细胞质膜的结构,维持正常的光合作用,以及调节激素和一些重要的生化物质代谢;此外,细胞内Ca2+可作为第二信使传递干旱信号,调节干旱胁迫导致的生理反应。  相似文献   

13.
Sperm‐mediated gene transfer (SMGT), the ability of sperm cells to spontaneously incorporate exogenous DNA and to deliver it to oocytes during fertilization, has been proposed as an easy and efficient method for producing transgenic animals. SMGT is still undergoing development and optimization to improve the uptake efficiency of foreign DNA by sperm cells, which is a preliminary, yet critical, step for successful SMGT. Towards this aim, we developed a quantitative, real‐time PCR‐based assay to assess the absolute number of exogenous plasmids internalized into the spermatozoon. Using this technique, we found that the circular form of the DNA is more efficiently taken up than the linearized form. We also found that DNA internalization into the nucleus of porcine sperm cells is better under specific methyl‐β‐cyclodextrin (MCD)‐treated conditions, where the plasma membrane properties were altered without significantly compromising sperm physiology. These results provide the first evidence that membrane cholesterol depletion by MCD might represent a novel strategy for enhancing the ability of sperm to take up heterologous DNA. Mol. Reprod. Dev. 79: 853–860, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Sperm from different species shows biological differences, determining the success or failure of the sperm-mediated gene transfer (SMGT) technique. There is evidence that exogenous DNA uptake by the spermatozoa is a species-specific and highly regulated phenomenon. Problems involving SMGT procedures might be related to activation of defenses in spermatozoa and in seminal plasma such as DNase enzymes. The objective in the present study was to transfect South American catfish spermatozoa after seminal plasma removal. Seminal plasma had a strong DNase activity that is reduced after sperm washes in isosmotic solution, in which Western blot analysis demonstrated a reduction in the DNase content after washes and Southern blot evaluations show the presence of plasmid after sperm washes. The seminal plasma DNase digests exogenous DNA in a few minutes and has an optimal activity at 43°C. Also, EDTA at 30 mM concentration inhibits the DNase activity. Using PCR the pEGFP vector was internalized by sperm cells even at lesser concentrations (5-40 ng/10(6) spermatozoa) without motility loss after seminal plasma removal. Conversely, using greater pEGFP concentrations (100 ng/10(6) spermatozoa), there were no motile cells, suggesting toxicity of exogenous DNA for sperm cells. These results are interpreted to provide information that can improve the protocol for generation of transgenic South American catfish.  相似文献   

15.
The objective was to introduce exogenous DNA into commercially sex-sorted bovine sperm using nanopolymer for transfection. In the first experiment, the optimal concentration and ratio of linear-to-circular plasmid was determined for NanoSMGT in unsorted sperm. A second experiment was conducted to transfect exogenous DNA into sex-sorted sperm. Exogenous DNA uptake occurred in a dose-dependent manner (P < 0.05). The optimal amount of DNA was 10 μg/106 cells. The ratios of linear-to-circular plasmid do not influence the uptake by unsorted sperm cells and none of the tested treatments affected sperm motility and viability. Commercially sex-sorted bovine sperm were able to uptake exogenous DNA using nanopolymer; however, both X- and Y-sorted sperm had decreased DNA uptake in comparison to unsorted sperm (P < 0.05). Neither sperm motility nor viability were affected by nanotransfection. In conclusion, nanopolymer efficiently introduced exogenous DNA into commercially sex-sorted bovine sperm; we inferred that these sperm could be used for production of embryos of the desired sex, a technique named NanoSMGT.  相似文献   

16.
Ejaculated mammalian sperm must acquire fertilization capacity after residing into the female reproductive tract, a process collectively known as capacitation. Cholesterol efflux was required for sperm maturation. Different from flagellated sperm, C. elegans sperm are crawling cells. C. elegans sperm are highly enriched with cholesterol though this animal species lacks biosynthetic pathway for cholesterol and its survival requires an exogenous cholesterol supply. The low abundance of cholesterol in C. elegans lipid extract is thought insufficient to form lipid microdomains ubiquitously in this organism. We present evidence that cholesterol is enriched in the plasma membrane of C. elegans spermatids and that cholesterol- and glycosphingolipids (GSLs)-enriched membrane microdomains (lipid microdomains) mediate sperm activation. Disruption of sperm lipid microdomains by acute manipulation of cholesterol in vitro blocks the sperm activation. Restriction of cholesterol uptake also results in the abnormal sperm activation in both males and hermaphrodites. Manipulation of the integrity of lipid microdomains by targeting the biosynthesis of GSLs inhibits sperm activation and the inhibition can be rescued by the addition of exogenous GSLs. The cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, which are exclusively found in lipid microdomains, also affects sperm activation. We conclude that localized signaling mediated by lipid microdomains is critical for worm sperm activation. Lipid microdomains composed of cholesterol and GSLs have been observed in flagellated sperm of several animal species, thus cholesterol, before its efflux from the plasma membrane, might be needed to assemble into a platform for some more important upstream signal sorting during spermatogenesis than was previously thought.  相似文献   

17.
Ejaculated mammalian sperm must acquire fertilization capacity after residing into the female reproductive tract, a process collectively known as capacitation. Cholesterol efflux was required for sperm maturation. Different from flagellated sperm, C. elegans sperm are crawling cells. C. elegans sperm are highly enriched with cholesterol though this animal species lacks biosynthetic pathway for cholesterol and its survival requires an exogenous cholesterol supply. The low abundance of cholesterol in C. elegans lipid extract is thought insufficient to form lipid microdomains ubiquitously in this organism. We present evidence that cholesterol is enriched in the plasma membrane of C. elegans spermatids and that cholesterol- and glycosphingolipids (GSLs)-enriched membrane microdomains (lipid microdomains) mediate sperm activation. Disruption of sperm lipid microdomains by acute manipulation of cholesterol in vitro blocks the sperm activation. Restriction of cholesterol uptake also results in the abnormal sperm activation in both males and hermaphrodites. Manipulation of the integrity of lipid microdomains by targeting the biosynthesis of GSLs inhibits sperm activation and the inhibition can be rescued by the addition of exogenous GSLs. The cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, which are exclusively found in lipid microdomains, also affects sperm activation. We conclude that localized signaling mediated by lipid microdomains is critical for worm sperm activation. Lipid microdomains composed of cholesterol and GSLs have been observed in flagellated sperm of several animal species, thus cholesterol, before its efflux from the plasma membrane, might be needed to assemble into a platform for some more important upstream signal sorting during spermatogenesis than was previously thought.  相似文献   

18.
Sperm mediated gene transfer (SMGT) could provide the opportunity to carry out transgenesis on a mass scale using spermatozoa as vectors for exogenous DNA. However, the efficiency of sperm‐mediated DNA transfer is still questionable, and the mode of transmission to the egg has not yet been well understood. Our aim was to investigate the capacity of bovine spermatozoa to carry exogenous DNA and its relationship to sperm functionality. We studied these parameters using flow cytometry to measure viability (necrosis and apoptosis) and capacitation status, computer‐assisted semen analysis (CASA) to measure motility parameters and in vitro fertilization (IVF) to assess fertilizing capacity. Furthermore, we studied the effect of capacitation status on interaction with exogenous DNA, and the role of heparin supplementation in this process. Bull spermatozoa showed a high capacity to bind DNA quickly and reached a maximum after 30 min, with approximately half of the DNA‐bound spermatozoa being viable. Incubation with exogenous DNA induced a decrease in sperm viability and motility and increased the proportion of apoptotic cells, but did not affect the cleavage rate in IVF assay. Heparin increased high‐lipid disorder and the number of sperm with DNA bound (viable and dead). In conclusion, this study shows that live spermatozoa can bind exogenous DNA with a slight negative effect in some parameters of sperm function that in our opinion, would not drastically compromise fertility. Mol. Reprod. Dev. 77: 687–698, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Transgenic animals are produced primarily by microinjecting exogenous DNA into the male pronuclei of a zygote. Microinjection is successful in mice but not efficient in farm animals, limiting its general utility. We have pursued an alternative technology for producing transgenic animals: Sperm Mediated Gene Transfer (SMGT). Based on our finding that sperm cells bind and internalize exogenous DNA, we used sperm as a vector for transmitting, not only their own DNA, but also, the exogenously-introduced gene of interest to the zygote. SMGT is highly efficient (up to greater than 80%) and relatively inexpensive; it can be used in species refractory to microinjection, whenever reproduction is mediated by gametes. In this report, we describe the procedure for selection of sperm donors and optimization of DNA uptake that are the key steps for the successful outcome of SMGT. We found that the nominal parameters that boar sperm should possess to serve as a good vector for exogenous DNA are the quality of semen based on standard parameters used in conventional animal breeding programs (volume, concentration, presence of abnormal sperm cells, motility at time of collection, and high progressive motility after 2 hr) and the ability of the sperm cells to take up and internalize exogenous DNA. The results described provide significant advances in SMGT technology applied to pigs, so that transgenic pigs can be efficiently obtained. Mol.  相似文献   

20.
Mature sperm cells have the spontaneous capacity to take up exogenous DNA. Such DNA specifically interacts with the subacrosomal segment of the sperm head corresponding to the nuclear area. Part of the sperm-bound foreign DNA is further internalized into nuclei. Using end-labelled plasmid DNA we have found that 15–22% of the total sperm bound DNA is associated with nuclei as determined on isolated nuclei. On the basis of autoradiographic analysis, nuclear permeability to exogenous DNA seems to be a wide phenomenon involving the majority of the sperm nuclei. In fact, the foreign DNA, incubated with sperm cells for different lengths of time, is found in 45% (10 min) to 65% (2 hr) of the sperm nuclei. Ultrastructural autoradiography on thin sections of mammalian spermatozoa, preincubated with end-labelled plasmid DNA, shows that the exogenous DNA is internalized into the nucleus. This conclusion is further supported by ultrastructural autoradiographic analysis on thin sections of nuclei isolated from spermatozoa preincubated with end-labelled DNA. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号