首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hunter SE  Spremulli LL 《Biochemistry》2004,43(22):6917-6927
Elongation factor Tu (EF-Tu) is responsible for the delivery of the aminoacyl-tRNAs (aa-tRNA) to the ribosome during protein synthesis. The primary sequence of domain II of EF-Tu is highly conserved. However, several residues thought to be important for aa-tRNA binding in this domain are not conserved between the mammalian mitochondrial and bacterial factors. One of these residues is located at position 290 (Escherichia coli numbering). Residue 290 is Gln in most of the prokaryotic factors but is conserved as Leu (L338) in the mammalian mitochondrial factors. This residue is in a loop contacting the switch II region of domain I in the GTP-bound structure. It also helps to form the binding pocket for the 5' end of the aa-tRNA in the ternary complex. In the present work, Leu338 was mutated to Gln (L338Q) in EF-Tu(mt). The complementary mutation was created at the equivalent position in E. coli EF-Tu (Q290L). EF-Tu(mt) L338Q functions as effectively as wild-type EF-Tu(mt) in poly(U)-directed polymerization with both prokaryotic and mitochondrial substrates and in ternary complex formation assays with E. coli aa-tRNA. However, the L338Q mitochondrial variant has a reduced affinity for mitochondrial Phe-tRNA(Phe). E. coli EF-Tu Q290L is more active in poly(U)-directed polymerization with both mitochondrial and prokaryotic substrates and has a higher GTPase activity in both the absence and presence of ribosomes. Surprisingly, while E. coli EF-Tu Q290L is more active in polymerization with mitochondrial Phe-tRNA(Phe), this variant has low activity in the formation of a stable ternary complex with mitochondrial aa-tRNA.  相似文献   

2.
3.
The effects of GDP and of aurodox (N-methylkirromycin) on the affinity of elongation factor Tu (EF-Tu) for aminoacyl-tRNA (aa-tRNA) have been quantified spectroscopically by using Phe-tRNA(Phe)-Fl8, a functionally active analogue of Phe-tRNA(Phe) with a fluorescein dye convalently attached to the s4U-8 base. The association of EF-Tu.GDP with Phe-tRNA(Phe)-Fl8 resulted in an average increase of 33% in fluorescein emission intensity. This spectral change was used to monitor the extent of ternary complex formation as a function of EF-Tu.GDP concentration, and hence to obtain a dissociation constant, directly and at equilibrium, for the EF-Tu.GDP-containing ternary complex. The Kd for the Phe-tRNA(Phe)-Fl8.EF-Tu.GDP complex was found to average 28.5 microM, more than 33,000-fold greater than the Kd of the Phe-tRNA(Phe)-Fl8.EF-Tu.GTP complex under the same conditions. In terms of free energy, the delta G degree for ternary complex formation at 6 degrees C was -11.5 kcal/mol with GTP and -5.8 kcal/mol with GDP. Thus, the hydrolysis of the ternary complex GTP results in a dramatic decrease in the affinity of EF-Tu for aa-tRNA, thereby facilitating the release of EF-Tu.GDP from the aa-tRNA on the ribosome. Aurodox (200 microM) decreased the Kd of the GDP complex by nearly 20-fold, to 1.46 microM, and increased the Kd of the GTP complex by at least 6-fold. The binding of aurodox to EF-Tu therefore both considerably strengthens EF-Tu.GDP affinity for aa-tRNA and also weakens EF-Tu.GTP affinity for aa-tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

5.
The ubiquity of elongation factor Tu (EF-Tu)-dependent conformational changes in amino-acyl-tRNA (aa-tRNA) and the origin of the binding energy associated with aa-tRNA.EF-Tu.GTP ternary complex formation have been examined spectroscopically. Fluorescein was attached covalently to the 4-thiouridine base at position 8 (s4U-8) in each of four elongator tRNAs (Ala, Met-m, Phe, and Val). Although the probes were chemically identical, their emission intensities in the free aa-tRNAs differed by nearly 3-fold, indicating that the dyes were in different environments and hence that the aa-tRNAs had different tertiary structures near s4U-8. Upon association with EF-Tu.GTP, the emission intensities increased by 244%, 57%, or 15% for three aa-tRNAs due to a change in tRNA conformation; the fourth aa-tRNA exhibited no fluorescence change upon binding to EF-Tu.GTP. Despite the great differences in the emission intensities of the free aa-tRNAs and in the magnitudes of their EF-Tu-dependent intensity increases, the emission intensity per aa-tRNA molecule was nearly the same (within 9% of the average) for the four aa-tRNAs when bound to EF-Tu-GTP. Thus, the binding of EF-Tu.GTP induced or selected a tRNA conformation near s4U-8 that was very similar, and possibly the same, for each aa-tRNA species. It therefore appears that EF-Tu functions, at least in part, by minimizing the conformational diversity in aa-tRNAs prior to their beginning the recognition and binding process at the single decoding site on the ribosome. Since an EF-Tu-dependent fluorescence change was also observed with fluorescein-labeled tRNA(Phe), the protein-dependent structural change is effected by direct interactions between EF-Tu and the tRNA and does not require the aminoacyl group. The Kd of the tRNA(Phe).EF-Tu.GTP ternary complex was determined, at equilibrium, to be 2.6 microM by the ability of the unacylated tRNA to compete with fluorescent Phe-tRNA for binding to the protein. Comparison of this Kd with that of the Phe-tRNA ternary complex showed that in this case the aminoacyl moiety contributed 4.3 kcal/mol toward ternary complex formation at 6 degrees C but that the bulk of the binding energy in the ternary complex was derived from direct protein-tRNA interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.  相似文献   

7.
The ribosome catalyzes peptide bond formation between peptidyl-tRNA in the P site and aminoacyl-tRNA in the A site. Here, we show that the nature of the C-terminal amino acid residue in the P-site peptidyl-tRNA strongly affects the rate of peptidyl transfer. Depending on the C-terminal amino acid of the peptidyl-tRNA, the rate of reaction with the small A-site substrate puromycin varied between 100 and 0.14 s(-1), regardless of the tRNA identity. The reactivity decreased in the order Lys = Arg > Ala > Ser > Phe = Val > Asp > Pro, with Pro being by far the slowest. However, when Phe-tRNA(Phe) was used as A-site substrate, the rate of peptide bond formation with any peptidyl-tRNA was approximately 7 s(-1), which corresponds to the rate of binding of Phe-tRNA(Phe) to the A site (accommodation). Because accommodation is rate-limiting for peptide bond formation, the reaction rate is uniform for all peptidyl-tRNAs, regardless of the variations of the intrinsic chemical reactivities. On the other hand, the 50-fold increase in the reaction rate for peptidyl-tRNA ending with Pro suggests that full-length aminoacyl-tRNA in the A site greatly accelerates peptide bond formation.  相似文献   

8.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

9.
Navratil T  Spremulli LL 《Biochemistry》2003,42(46):13587-13595
Elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA to the A-site of the ribosome. In a multiple-sequence alignment of prokaryotic EF-Tu's, Gln97 is nearly 100% conserved. In contrast, in mammalian mitochondrial EF-Tu's, the corresponding position is occupied by a conserved proline residue. Gln97 is located in the switch II region in the GDP/GTP binding domain of EF-Tu. This domain undergoes a significant structural rearrangement upon GDP/GTP exchange. To investigate the role of Gln97 in bacterial EF-Tu, the E. coli EF-Tu variant Q97P was prepared. The Q97P variant displayed no activity in the incorporation of [(14)C]Phe on poly(U)-programmed E. coli ribosomes. The Q97P variant bound GDP more tightly than the wild-type EF-Tu with K(d) values of 7.5 and 12 nM, respectively. The intrinsic rate of GDP exchange was 2-3-fold lower for the Q97P variant than for wild-type EF-Tu in the absence of elongation factor Ts (EF-Ts). Addition of EF-Ts equalized the GDP exchange rate between the variant and wild-type EF-Tu. The variant bound GTP at 3-fold lower levels than the wild-type EF-Tu. Strikingly, the Q97P variant was completely inactive in ternary complex formation, accounting for its inability to function in polymerization. The structural basis of these observations is discussed.  相似文献   

10.
It was shown that Phe-tRNA Phe derivatives bearing arylazidogroups scattered statistically on N7 guanosine residues retain the ability to EF-Tu-dependent binding to E. coli ribosomes. UV-irradiation of the corresponding complex with the derivative of Phe-tRNA Phe located at A-site results in a specific modification of both ribosomal subunits to an approximately equal extent. It was found that proteins S9, S15, S16, S17, S18, S19 and L8/L9, L13, L15, L27 are labelled at A-site.  相似文献   

11.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

12.
The universally conserved His-66 of elongation factor Tu (EF-Tu) stacks on the side chain of the esterified Phe of Phe-tRNA(Phe). The affinities of eight aminoacyl-tRNAs were differentially destabilized by the introduction of the H66A mutation into Escherichia coli EF-Tu, whereas Ala-tRNA(Ala) and Gly-tRNA(Gly) were unaffected. The H66F and H66W proteins each show a different pattern of binding of 10 different aminoacyl-tRNAs, clearly showing that this position is critical in establishing the specificity of EF-Tu for different esterified amino acids. However, the H66A mutation does not greatly affect the ability of the ternary complex to bind ribosomes, hydrolyze GTP, or form dipeptide, suggesting that this residue does not directly participate in ribosomal decoding. Selective mutation of His-66 may improve the ability of certain unnatural amino acids to be incorporated by the ribosome.  相似文献   

13.
K Takahashi  S Ghag  S Chládek 《Biochemistry》1986,25(25):8330-8336
We investigated the elongation factor Tu (EF-Tu) dependent binding of Phe-tRNA and Phe-tRNAs with the nicks at positions 46, 37, and 17 to the Escherichia coli 70S ribosome-poly(U)-tRNAPhe complex. Binding of Phe-tRNA1-45 + 47-76, Phe-tRNA1-36 + 38-76, or Phe-tRNA1-16 + 17-76 to the 70S ribosome has been found to be poly(U) X tRNA dependent and, similar to that of intact Phe-tRNA, is inhibited by the antibiotic thiostrepton. We have further found that, contrary to a previous report [Modolell, J., Cabrer, B., Parmeggiani, A., & Vazquez, D. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 1796], the EF-Tu-ribosome GTPase mediated by Phe-tRNA is not inhibited by thiostrepton; rather, the drug stimulates the endogenous GTPase of the EF-Tu X 70S ribosome. Phe-tRNA fragments 47-76, 38-76, and 17-76 all promote the EF-Tu X GTPase reaction in the presence of 70S ribosome-poly(U)-tRNAPhe yeast. Moreover, since the GTPase-promoting activities of both the short and long fragments are similar, it appears that the most important aminoacyl transfer ribonucleic acid (aa-tRNA) interaction with EF-Tu occurs alongside its 3' quarter. Thiostrepton slightly stimulates the GTPase activity of these Phe-tRNA fragments. Although the Phe-tRNA1-36 + 38-76 cannot bind to poly(U) during its binding to 70S ribosomes, its binding at high Mg2+ concentration occurs at the A site. Thus, most of the bound modified Phe-tRNA functions as the acceptor in the peptidyltransferase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. During the elongation cycle, EF-Tu interacts with guanine nucleotides, aa-tRNA and its nucleotide exchange factor (EF-Ts). Quantitative determination of the equilibrium dissociation constants that govern the interactions of mammalian mitochondrial EF-Tu (EF-Tu(mt)) with guanine nucleotides was the focus of the work reported here. Equilibrium dialysis with [3H]GDP was used to measure the equilibrium dissociation constant of the EF-Tu(mt) x GDP complex (K(GDP) = 1.0 +/- 0.1 microM). Competition of GTP with a fluorescent derivative of GDP (mantGDP) for binding to EF-Tu(mt) was used to measure the dissociation constant of the EF-Tu(mt) x GTP complex (K(GTP) = 18 +/- 9 microM). The analysis of these data required information on the dissociation constant of the EF-Tu(mt) x mantGDP complex (K(mGDP) = 2.0 +/- 0.5 microM), which was measured by equilibrium dialysis. Both K(GDP) and K(GTP) for EF-Tu(mt) are quite different (about two orders of magnitude higher) than the dissociation constants of the corresponding complexes formed by Escherichia coli EF-Tu. The forward and reverse rate constants for the association and dissociation of the EF-Tu(mt) x GDP complex were determined using the change in the fluorescence of mantGDP upon interaction with EF-Tu(mt). These values are in agreement with a simple equilibrium binding interaction between EF-Tu(mt) and GDP. The results obtained are discussed in terms of the recently described crystal structure of the EF-Tu(mt) x GDP complex.  相似文献   

15.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   

16.
A recombinant chimeric elongation factor containing the region of EF-1 alpha from Sulfolobus solfataricus harboring the site for GDP and GTP binding and GTP hydrolysis (SsG) and domains M and C of Escherichia coli EF-Tu (EcMC) was studied. SsG-EcMC did not sustain poly(Phe) synthesis in either S. solfataricus or E. coli assay system. This was probably due to the inability of the chimera to interact with aa-tRNA. The three-dimensional modeling of SsG-EcMC indicated only small structural differences compared to the Thermus aquaticus EF-Tu in the ternary complex with aa-tRNA and GppNHp, which did not account for the observed inability to interact with aa-tRNA. The addition of the nucleotide exchange factor SsEF-1 beta was not required for poly(Phe) synthesis since the chimera was already able to exchange [(3)H]GDP for GTP at very high rate even at 0 degrees C. Compared to that of SsEF-1 alpha, the affinity of the chimera for guanine nucleotides was increased and the k(cat) of the intrinsic GTPase was 2-fold higher. The heat stability of SsG-EcMC was 3 and 13 degrees C lower than that displayed by SsG and SsEF-1alpha, respectively, but 30 degrees C higher than that of EcEF-Tu. This pattern remained almost the same if the melting curves of the proteins being investigated were considered instead. The chimeric elongation factor was more thermophilic than SsG and SsEF-1 alpha up to 70 degrees C; at higher temperatures, inactivation occurred.  相似文献   

17.
A fluorescence titration assay was used to detect the effects of various modifications of E.coli elongation factor Tu on the formation of the ternary complex with aminoacyl-tRNAs. The treatment of EF-Tu.GDP with TPCK, an analogue of the 3'terminus of aminoacyl-tRNA, was found to have no influence on the conversion of EF-Tu.GDP to 'active' EF-Tu.GTP, but does decrease the affinity of the activated protein for yeast aminoacyl-tRNA by more than three orders of magnitude. Modification of the elongation factor by limited cleavage with trypsin, leading to the excision of amino acid residues 45-58, has only a minor influence on ternary complex formation. The equilibrium dissociation constant of the ternary complex with this trypsin-treated EF-Tu.GTP and E.coli Phe-tRNA(Phe) is only one order of magnitude higher than that of the ternary complex with native EF-Tu. Mutations in the amino acid residues 222 and 375 of EF-Tu also have little effect on ternary complex formation. Compared with TPCK-treated EF-Tu, the affinities of the two mutant species, designated EF-tuAR and EF-TuBO respectively, for [AEDANS-s2C]Tyr-tRNA(Tyr) are only slightly reduced and in the same range as trypsin-cleaved EF-Tu.  相似文献   

18.
Transition from exponential phase of growth to stationary phase in Streptomyces aureofaciens is characterized by a decrease in the rate of translation and induction of tetracycline (Ttc) biosynthesis. In exponential phase, no significant changes were found in the activity of ribosomes at binding of ternary complex Phe-tRNA.EF-Tu.GTP to the A-site on ribosomes. Overexpression of Ttc in stationary phase is accompanied by a decrease in the binding of the ternary complex Phe-tRNA.EF-Tu.GTP to the A-site of ribosome and a formation of an aggregate with Ttc by part of the ribosomes. Antibiotics that cause ribosome to stall or pause could increase the requirement for tmRNA in the process called trans-translation. We found differences in the level of tmRNA during the development of S. aureofaciens. Subinhibitory concentrations of Ttc, streptomycin and chloramphenicol induced an increase in the tmRNA level in cells from the exponential phase of growth. In vitro trans-translation system of S. aureofaciens was sensitive to Ttc at a concentration of > 15 micromol/L; the trans-translation system can thus be considered to contribute to resistance against Ttc produced only at sublethal concentrations. These experiments suggest that the main role of the rising tmRNA level at the beginning of the Ttc production is connected with ribosome rescue.  相似文献   

19.
Elongation factor Tu (EF-Tu) from Escherichia coli carrying the mutation G222D is unable to hydrolyze GTP on the ribosome and to sustain polypeptide synthesis at near physiological Mg2+ concentration, although the interactions with guanine nucleotides and aminoacyl-tRNA are not changed significantly. GTPase and polypeptide synthesis activities are restored by increasing the Mg2+ concentration. Here we report a pre-steady-state kinetic study of the binding of the ternary complexes of wild-type and mutant EF-Tu with Phe-tRNA(Phe) and GTP to the A site of poly(U)-programed ribosomes. The kinetic parameters of initial binding to the ribosome and subsequent codon-anticodon interaction are similar for mutant and wild-type EF-Tu, independent of the Mg2+ concentration, suggesting that the initial interaction with the ribosome is not affected by the mutation. Codon recognition following initial binding is also not affected by the mutation. The main effect of the G222D mutation is the inhibition, at low Mg2+ concentration, of codon-induced structural transitions of the tRNA and, in particular, their transmission to EF-Tu that precedes GTP hydrolysis and the subsequent steps of A-site binding. Increasing the Mg2+ concentration to 10 mM restores the complete reaction sequence of A-site binding at close to wild-type rates. The inhibition of the structural transitions is probably due to the interference of the negative charge introduced by the mutation with negative charges either of the 3' terminus of the tRNA, bound in the vicinity of the mutated amino acid in domain 2 of EF-Tu, or of the ribosome. Increasing the Mg2+ concentration appears to overcome the inhibition by screening the negative charges.  相似文献   

20.
We have studied the properties of a mutant elongation factor Tu, encoded by tufB (EF-TuBo), in which Gly-222 is replaced by Asp. For its purification from the kirromycin-resistant EF-Tu encoded by tufA (EF-TuAr), a method was developed by exploiting the different affinities to kirromycin of the two factors and the competition between kirromycin and elongation factor Ts (EF-Ts) for binding to EF-Tu. The resulting EF-TuBo kirromycin and EF-TuAr EF-Ts complexes are separated by chromatography on diethylaminoethyl-Sephadex A-50. For the first time we have succeeded in obtaining a tufB product in homogeneous form. Compared with wild-type EF-Tu, EF-TuBo displays essentially the same affinity for GDP and GTP, with only the dissociation rate of EF-Tu GTP being slightly faster. Protection of amino-acyl-tRNA (aa-tRNA) against nonenzymatic deacylation by different EF-Tu species indicates that conformational alterations occur in the ternary complex EF-TuBo GTP aa-tRNA. However, the most dramatic modification is found in the EF-TuBo interaction with the ribosome. Its activity in poly(Phe) synthesis as well as in the GTPase activity associated with the interaction of its ternary complex with the ribosome mRNA complex requires higher Mg2+ concentrations than wild-type EF-Tu (Mg2+ optimum at 10-14 vs. 6 mM), even if EF-TuBo can sustain enzymatic binding of aa-tRNA to ribosomes at low Mg2+. The anomalous behavior of EF-TuBo is reflected in a remarkable increase of the fidelity in poly(Phe) synthesis, especially at high Mg2+ concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号