首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
CD44基因的分子生物学特性及其与肿瘤关系的研究进展   总被引:9,自引:0,他引:9  
CD44是一种细胞表面跨膜糖蛋白分子 ,在许多细胞上均有分布 ,如淋巴细胞、单核细胞、红细胞、成纤维细胞、上皮细胞、平滑肌细胞、神经胶质细胞及肿瘤细胞等[1-3 ] 。CD44蛋白属于未分类的粘附分子 ,其正常功能是作为受体识别透明质酸(HA)和胶原蛋白 I、II等 ,主要参与淋巴细胞的激活以及细胞 -细胞 ,细胞 -基质之间的特异性粘连过程 ,CD44基因的变异性、多样性表达与肿瘤的生长及转移有密切的相关性 [4~ 7] 。现将 CD44基因的分子生物学特性、主要功能、在常见肿瘤中的表达及其与肿瘤发生、浸润、转移的关系和可能的转移机制作简要…  相似文献   

2.
肿瘤浸润转移分子机制的研究进展   总被引:5,自引:0,他引:5  
肿瘤浸润转移是多因素参与、多步骤完成的生物化学变化过程。人们已经逐渐认识到浸润转移不仅与肿瘤细胞有关,更是肿瘤细胞和肿瘤组织微环境复杂的相互作用的结果,其过程涉及多个分子作用机制和信号转导途径,包括细胞和细胞的黏附分子、细胞外基质降解、生长因子、趋化因子和淋巴血管生成因子等。本文综述了肿瘤浸润转移的分子机制。  相似文献   

3.
骨桥蛋白与肿瘤转移   总被引:2,自引:0,他引:2  
转移是肿瘤恶化的主要标志.骨桥蛋白被称为"肿瘤转移基因",是一种分泌型、粘附性的糖基化磷蛋白,与其主要受体整合素和CD44相互作用,参与多种器官和组织的生理病理过程,具有多种功能.近来的很多研究揭示,骨桥蛋白在肿瘤细胞的粘附、浸润、迁移及新血管生成过程中起关键作用. 骨桥蛋白在血清中的含量高低与病人的肿瘤转移情况及预后密切相关.很多研究认为,骨桥蛋白是一个很好的肿瘤转移标志物,是诊断与治疗肿瘤转移的新靶点.本文就骨桥蛋白的一般生物学特点及其在肿瘤转移过程中所起的作用和主要机制进行综述.  相似文献   

4.
Ezrin是细胞骨架与细胞膜连接的特定蛋白之一,它有助于细胞内摄作用、细胞胞吐作用及跨膜信号发放的途径.研究表明,Ezrin在不同肿瘤组织中表达异常,推测它可能参与肿瘤的侵袭转移,其通过改变肿瘤细胞极性及细胞运动、调节肿瘤细胞间黏附及细胞与细胞外基质黏附、参与肿瘤细胞内信号转导而影响恶性肿瘤转移.本文主要介绍了Ezrin生物学特性、与CD44相互关系以及目前在肿瘤研究中的现状.  相似文献   

5.
E-cadherin和CD44V6在食管上皮癌变过程及癌组织中的表达   总被引:1,自引:0,他引:1  
研究不同类型的食管上皮增生和癌组织的 E- cadherin (E- cad)和 CD44 V6的表达 ,并探讨其与食管癌发生和发展的关系。应用免疫组织化学 SABC法 ,观察 10例正常、 3例消化性溃疡、 2 5例单纯性增生、 15例不典型增生的食管粘膜上皮 ,5例食管原位癌与 5 4例浸润癌组织中的 E- cad和 CD44 V6蛋白的表达情况。结果显示正常食管鳞状上皮和高分化肿瘤细胞膜和细胞浆 E- cad和 CD44 V6染色 ,非典型增生、低分化肿瘤细胞两种蛋白抗体表达减弱或呈阴性。E- cad和 CD44 V6的表达与癌组织的组织学分级、类型和淋巴结转移有关 (P<0 .0 1,P<0 .0 5 ) ,与癌组织的浸润深度无关 (P>0 .0 5 )。提示E- cad和 CD44 V6表达减弱是癌组织低分化和高度恶性的生物学标志 ,但其与淋巴结转移的关系有待进一步研究  相似文献   

6.
CD147的研究进展   总被引:5,自引:0,他引:5  
CD147分子是一种广泛表达于人体多种组织的跨膜糖蛋白,属于免疫球蛋白超家族。CD147在多种肿瘤细胞和组织中高表达,通过诱导基质金属蛋白酶(MMP)的分泌促进了肿瘤的浸润、转移。同时,CD147与炎症反应如类风湿性关节炎、动脉粥样硬化,以及细胞、组织的分化和发育等密切相关。简要综述了CD147参与的多种生理、病理过程。  相似文献   

7.
microRNAs(miRNAs)是一类在转录后水平调控基因表达的内源性非编码小RNA分子.miRNAs具有癌基因与抑癌基因的功能,参与肿瘤细胞的增殖、粘附、侵袭、转移和肿瘤血管形成等过程.miRNAs可调节肿瘤细胞转移表型,主要通过改变肿瘤细胞黏附力、侵袭力与迁移力.本文重点介绍调节肿瘤细胞转移表型相关miRNAs及其作用的分子机制,以便为肿瘤转移的研究提供新思路.  相似文献   

8.
黏附分子CD24在肿瘤转移中作用   总被引:6,自引:0,他引:6  
CD24属糖基磷脂酰肌醇锚蛋白。作为P-选择素配体的黏附分子,其可调节B细胞发育和神经发生。研究显示,CD24高表达在多种肿瘤细胞表面,参与肿瘤的发生发展。已通过体外试验和动物模型证实CD24对多种肿瘤生长和转移相关的肿瘤细胞特性具有调节作用;结合人肿瘤组织研究显示,CD24和乳腺癌、前列腺癌、胰腺癌及肝内胆管癌等肿瘤患者的生存率及预后密切相关。因此,以CD24为靶向的肿瘤诊断和治疗有着诱人的临床应用前景。  相似文献   

9.
syndecan-1分子(CD138)属粘附分子整合素跨膜粘结蛋白(heparan sulfate proteoglycan,HSPG)家族成员,可与多种因子结合,参与组织器官分化发育、血管形成、组织再生等一系列生理过程的调节,并与肿瘤细胞归巢及转移等过程有关,也是判断某些肿瘤预后的指标。  相似文献   

10.
抑癌基因和肿瘤转移   总被引:4,自引:0,他引:4  
目前肿瘤治疗最棘手的问题,莫过于肿瘤细胞对传统治疗药物的抗性和肿瘤转移,所以,进一步研究肿瘤细胞的抗药性和转移的分子基础,已成为提高肿瘤治疗和预后的热点问题。本文就肿瘤转移过程中抑癌基因变化的研究进展作一介绍。肿瘤转移是个有多种基因参与的过程。在此过...  相似文献   

11.
CD44 is a cell surface adhesion molecule for hyaluronan and is implicated in tumor invasion and metastasis. Proteolytic cleavage of CD44 plays a critical role in the migration of tumor cells and is regulated by factors present in the tumor microenvironment, such as hyaluronan oligosaccharides and epidermal growth factor. However, molecular mechanisms underlying the proteolytic cleavage on membranes remain poorly understood. In this study, we demonstrated that cholesterol depletion with methyl-β-cyclodextrin, which disintegrates membrane lipid rafts, enhances CD44 shedding mediated by a disintegrin and metalloproteinase 10 (ADAM10) and that cholesterol depletion disorders CD44 localization to the lipid raft. We also evaluated the effect of long term cholesterol reduction using a statin agent and demonstrated that statin enhances CD44 shedding and suppresses tumor cell migration on a hyaluronan-coated substrate. Our results indicate that membrane lipid organization regulates CD44 shedding and propose a possible molecular mechanism by which cholesterol reduction might be effective for preventing and treating the progression of malignant tumors.  相似文献   

12.
CD44, a widely expressed cell surface glycoprotein, plays a major role in cell-cell adhesion, cell-substrate interaction, lymphocyte homing, and tumor metastasis. For tumor metastasis to occur through the blood vessel and lymphatic vessel pathway, the tumor cells must first adhere to endothelial cells. Recent studies have shown that high expression of CD44 in certain types of tumors is associated with the hematogenic spread of cancer cells. However, the functional relevance of CD44 to tumor cell metastasis remains unknown. In this study, we investigated the mechanisms of CD44 cross-linking-induced adhesion and transendothelial migration of tumor cells using MDA-MB-435S breast cancer cell line. Breast cancer cells were found to express high levels of CD44. Using flow cytometric analysis and immunofluorescence staining, we demonstrated that cross-linking of CD44 resulted in a marked induction of the expression of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) by exocytosis. These results were also observed with the Hs578T breast cancer cell line. Furthermore, LFA-1- and VLA-4-mediated adhesion and transendothelial cancer cell migration were also studied. Anti-LFA-1 mAb or anti-VLA-4 mAb alone had no effect on adhesion or transendothelial cancer cell migration, but were able to inhibit both of these functions when added together. This shows that CD44 cross-linking induces LFA-1 and VLA-4 expression in MDA-MB-435S cells and increases integrin-mediated adhesion to endothelial cells, resulting in the transendothelial migration of breast cancer cells. These observations provide direct evidence of a new function for CD44 that is involved in the induction of LFA-1 and VLA-4 expression by exocytosis in MDA-MB-435S cells. Because these induced integrins promote tumor cell migration into the target tissue, it may be possible to suppress this by pharmacological means, and thus potentially cause a reduction in invasive capability and metastasis.  相似文献   

13.
Selectin-mediated binding of tumor cells to platelets, leukocytes, and vascular endothelium may regulate their hematogenous spread in the microvasculature. We recently reported that CD44 variant isoforms (CD44v) on LS174T colon carcinoma cells possess selectin binding activity. Here we extended those findings by showing that T84 and Colo205 colon carcinoma cells bind selectins via sialidase-sensitive O-linked glycans presented on CD44v, independent of heparan and chondroitin sulfate. To assess the functional role of CD44v in selectin-mediated binding, we quantified the adhesion to selectins of T84 cell subpopulations sorted based on their CD44 expression levels and stable LS174T cell lines generated using CD44 short hairpin RNA. High versus low CD44-expressing T84 cells tethered more efficiently to P- and L-selectin, but not E-selectin, and rolled more slowly on P- and E-selectin. Knocking down CD44 expression on LS174T cells inhibited binding to P-selectin and increased rolling velocities over P- and L-selectin relative to control-transfected cells, without affecting tethering and rolling on E-selectin, however. Blot rolling analysis revealed the presence of alternative sialylated glycoproteins with molecular masses of approximately 170 and approximately 130 kDa, which can mediate selectin binding in CD44-knockdown cells. Heparin diminishes the avidity of colon carcinoma cells for P- and L-selectin, which may compromise integrin-mediated firm adhesion to host cells and mitigate metastasis. Our finding that CD44v is a functional P-selectin ligand on colon carcinoma provides a novel perspective on the enhanced metastatic potential associated with tumor CD44v overexpression and the role of selectins in metastasis.  相似文献   

14.
Correlations have been noted between the expression of certain alternatively spliced CD44 isoforms and the metastatic propensity of various histologically distinct tumor cell types. The precise mechanism by which particular CD44 isoforms contribute to the metastatic process is, however, unclear. In the present study we demonstrate that CD44R2, a CD44 isoform highly expressed on activated and transformed hemopoietic cells, can recognize and bind a common determinant present on CD44H and CD44R1. Importantly, CD44H lacked this activity. Pretreatment of TIL1 cells expressing CD44H or CD44R1 with chondroitinase ABC inhibited adhesion to CD44R2, suggesting that the unique inserted region present within the CD44R2 molecule, encoded by exon v10, mediates cell adhesion by potentiating the recognition of chondroitin sulfate moieties presented in association with other CD44 molecules. These data help explain the differential involvement of v10-containing CD44 isoforms in tumor metastasis.  相似文献   

15.
Osteosarcoma (OS) is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA), is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types. Here, we investigated the effects of stable shRNA-mediated silencing of CD44 gene products on in vitro and in vivo metastatic properties of the highly metastatic human 143-B OS cell line. In vitro, CD44 knockdown resulted in a 73% decrease in the adhesion to HA, a 57% decrease in the migration rate in a trans-filter migration assay, and a 28% decrease in the cells'' capacity for anchorage-independent growth in soft agar compared to the control cells, implicating that CD44 expression contributes to the metastatic activity of 143-B cells. However, making use of an orthotopic xenograft OS mouse model, we demonstrated that reduced CD44 expression facilitated primary tumor growth and formation of pulmonary metastases. The enhanced malignant phenotype was associated with decreased adhesion to HA and reduced expression of the tumor suppressor merlin in vivo. In conclusion, our study identified CD44 as a metastasis suppressor in this particular experimental OS model.  相似文献   

16.
It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as survival, progression and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites and to localize to distant organs. CD44, an adhesion/homing molecule, is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix. CD44, a multistructural and multifunctional molecule, detects changes in extracellular matrix components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-extracellular matrix interactions, cell trafficking, lymph node homing and the presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44 variants (CD44v), especially CD44v4-v7 and CD44v6-v9, in tumor progression has been confirmed for many tumor types in numerous clinical studies. The downregulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be caused by their higher binding affinity than CD44s for hyaluronan. Alternatively, CD44v-specific functions could be caused by differences in associating molecules, which may bind selectively to the CD44v exon. This minireview summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing CD44v can target multiple metastatic tumors.  相似文献   

17.
For cancer metastasis, tumor cells present in the circulation must first adhere to the endothelium. Integrins play a central role in leukocyte adhesion to the endothelium and subsequent migration into tissues. The majority of tumor cells derived from solid cancers, including breast cancer, do not express integrins. We investigated the mechanisms of adhesion and transendothelial migration of cancer cells using breast carcinoma cell lines. Our results showed the following features of breast cancer cells: (1) HGF stimulated breast cancer cells by up-regulating CD44 expression in a concentration-dependent manner. (2) the maximum level of HGF-induced CD44 up-regulation on breast cancer cell lines occurred within 3 h. (3) HGF-induced up-regulation of CD44 was mediated by the tyrosine kinase signaling pathway. (4) HGF induced CD44-mediated adhesion of tumor cell lines to bone marrow-derived endothelial cells. (5) HGF did not change rolling of breast cancer cell lines on bone marrow-derived endothelial cells, but enhanced firm adhesion of cancer cells on endothelial cells under shear stress conditions. (6) HGF increased transendothelial migration of cancer cells. Our results indicate that HGF stimulates CD44-mediated adhesion of breast cancer cells to bone marrow-derived endothelial cells, which subsequently results in transendothelial migration of tumor cells. These results suggest that CD44 may confer the metastatic properties of breast cancer cells and, therefore, could be used as a target in future molecular cancer therapy.  相似文献   

18.
The liberation of CD44   总被引:13,自引:0,他引:13  
CD44 was once thought to simply be a transmembrane adhesion molecule that also played a role in the metabolism of its principal ligand hyaluronan. Investigations of CD44 over the past approximately 20 yr have established additional functions for CD44, including its capacity to mediate inflammatory cell function and tumor growth and metastasis. It has also become evident that intricate posttranslational modifications of CD44 regulate the affinity of the receptor for its ligands. In this review, we focus on emerging evidence that functional fragments of the cytoplasmic and ectodomain of CD44 can be liberated by enzymatic modification of cell surfaces as well as of cell-associated matrix. Based on the evidence discussed, we propose that CD44 exists in three phases, as a transmembrane receptor, as an integral component of the matrix, and as a soluble protein found in body fluids, each with biologically significant functions of which some are shared and some distinct. Thus, CD44 represents a model for understanding posttranslational processing and its emerging role as a general mechanism for regulating cell behavior.  相似文献   

19.
20.
CD44, a receptor for hyaluronan (HA), has been implicated in tumor growth and metastasis. Most CD44-positive cells fail to exhibit constitutive HA receptor function but CD44-mediated HA binding on hematopoetic cells can be induced by antibody cross-linking of the receptor and by physiologic stimuli, including cytokines. We now demonstrate that oncostatin M (OSM) and transforming growth factor-beta1, cytokines known to regulate the growth of tumor cells, stimulate HA binding in lung epithelial-derived tumor cells. In lung epithelial-derived tumor cells, cytokine-induced binding resulted from post-translational modification of the receptor. OSM-induced HA binding was associated with a reduction in N-linked carbohydrate content of CD44. In addition, OSM induced HA binding via a novel mechanism requiring sulfation of chondroitin sulfate chains linked to CD44. The mechanism underlying transforming growth factor-beta1 induced HA binding was distinct from the effects of OSM. The data presented indicate that modulation of the glycosylation and sulfation of CD44 by cytokines provides mechanisms for regulating cell adhesion during tumor growth and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号