首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to: (1) evaluate the ecological status of acid-sensitive and non acid-sensitive Maryland coastal plain streams using biological (Index of biotic Integrity [IBI] for fish), chemical and physical habitat conditions; (2) determine if a low IBI for coastal plain stream fish can be related to stream sensitivity from acidic inputs and (3) correlate land use activities and watershed size in the coastal plain streams with biological, chemical and physical conditions. IBI values obtained using 12 community metrics for Maryland coastal plain stream fish demonstrated that there were no significant differences in these values when acid-sensitive and non-acid-sensitive streams were compared. However, other complementary data in acid-sensitive streams such as absence of the acid-sensitive species, blacknose dace and higher numbers and biomass of tolerant species suggested that these streams may be impacted. IBI values were also found to be negatively correlated with various trace metals in acid-sensitive streams but not in non-acid-sensitive areas. Chemical conditions such as trace metals and nutrients were associated with land use activities. Highest concentrations of trace metals (chromium, nickel, and cadmium) were found in streams with the highest percentage of low residential housing. Nitrate concentrations were significantly higher in streams found in agricultural areas than in forested areas. Agriculturally dominated streams with highest nitrate concentrations (> 10 mg l-1) also contained the highest percentage of livestock feeding operations. The mean IBI score for streams draining agricultural land was higher than the mean value for forested streams when all streams were compared. However, when several streams that were only marginally forested (< 50%) were removed from the analysis, the IBI scores did not differ significantly by land use. Two physical habitat indices exhibited a strong associated with each other. Each habitat index also correlated with IBI values.  相似文献   

2.
Multimetric indices, such as the Index of Biological Integrity (IBI), are increasingly used by management agencies to determine whether surface water quality is impaired. However, important questions about the variability of these indices have not been thoroughly addressed in the scientific literature. In this study, we used a bootstrap approach to quantify variability associated with fish IBIs developed for streams in two Minnesota river basins. We further placed this variability into a management context by comparing it to impairment thresholds currently used in water quality determinations for Minnesota streams. We found that 95% confidence intervals ranged as high as 40 points for IBIs scored on a 0–100 point scale. However, on average, 90% of IBI scores calculated from bootstrap replicate samples for a given stream site yielded the same impairment status as the original IBI score. We suggest that sampling variability in IBI scores is related to both the number of fish and the number of rare taxa in a field collection. A comparison of the effects of different scoring methods on IBI variability indicates that a continuous scoring method may reduce the amount of bias in IBI scores.  相似文献   

3.
The goal of this paper is to illustrate the value and importance of the “weight of evidence” approach (use of multiple lines of evidence from field and laboratory data) to assess the occurrence or absence of ecological impairment in the aquatic environment. Single species toxicity tests, microcosms, and community metric approaches such as the Index of Biotic Integrity (IBI) are discussed. Single species toxicity tests or other single lines of evidence are valuable first tier assessments that should be used as screening tools to identify potentially toxic conditions in a effluent or the ambient environment but these tests should not be used as the final quantitative indicator of absolute ecological impairment that may result in regulatory action. Both false positive and false negative predictions of ecological effects can occur due to the inherent variability of measurement endpoints such as survival, growth and reproduction used in single species toxicity tests. A comparison of single species ambient toxicity test results with field data showed that false positives are common and likely related to experimental variability or toxicity to selected test species without measureable effects on the ecosystem. Results from microcosm studies have consistently demonstrated that chemical exposures exceeding the acute or chronic toxicity concentrations for highly sensitive species may cause little or no ecologically significant damage to an aquatic ecosystem. Sources of uncertainty identified when extrapolating from single species tests to ecological effects were: variability in individual response to pesticide exposure; variation among species in sensitivity to pesticides; effects of time varying and repeated exposures; and extrapolation from individual to population-level endpoints. Data sets from the Chesapeake Bay area (Maryland) were used to show the importance of using “multiple lines of evidence” when assessing biological impact due to conflicting results reported from ambient water column and sediment toxicity tests and biological indices (benthic and fish IBIs). Results from water column and sediment toxicity tests with multiple species in tidal areas showed that no single species was consistently the most sensitive. There was also a high degree of disagreement between benthic and fish IBI data for the various stations. The lack of agreement for these biological community indices is not surprising due to the differences in exposure among habitats occupied by these different taxonomic assemblages. Data from a fish IBI, benthic IBI and Maryland Physical Habitat Index (MPHI) were compared for approximately 1100 first through third-order Maryland non-tidal streams to show the complexity of data interpretation and the incidence of conflicting lines of evidence. A key finding from this non-tidal data set was the need for using more than one biological indicator to increase the discriminatory power of identifying impaired streams and reduce the possibility of “false negative results”. Based on historical data, temporal variability associated with an IBI in undisturbed areas was reported to be lower than the variability associated with single species toxicity tests.  相似文献   

4.
Conversion of land from natural to urban or agricultural cover degrades stream ecosystems and results in loss of biodiversity. We compared cumulative frequency distributions to measure responses to land use gradients for aquatic invertebrate taxa to agricultural, urban, and impervious surface cover gradients across the state of Maryland, USA. The technique identifies the upper limit threshold above which taxa cease to occur as well as a lower limit of detection of effect for negatively affected taxa. Urban development and impervious surface cover negatively affected the distributions of 44–56% of the 180 taxa tested, depending on region. Across similar taxa, negative responses occurred at lower levels of urban land covers in the Piedmont compared to the Coastal Plain physiographic province, which suggests that Piedmont aquatic biodiversity may be more vulnerable to urbanization. Most taxa were capable of tolerating high levels of agricultural development, although a number of common taxa in the Coastal Plain and Highlands regions were found to be agriculture-sensitive. Some taxa traditionally used as indicators were tolerant of very high levels of human-altered land uses, suggesting that such taxa require examination prior to use as indicators of landscape stressors. Our analysis method appears to be sufficiently flexible and sensitive to be used for a variety of taxa and systems for stressor detection, ecosystem monitoring, and spatially explicit forecasts of taxa loss as watershed land cover changes.  相似文献   

5.
Community response to environmental gradients operating at hierarchical scales was assessed in studies of benthic diatoms, macroinvertebrates and fish from 44 stream sites in the New York City watershed. Hierarchical cluster analysis (TWINSPAN) of diatoms and fish partitioned the study sites into four groups, i.e., acid streams, reservoir outlets and wetland streams, large eutrophic streams, and small eutrophic streams; macroinvertebrate TWINSPAN distinguished an additional group of silty eutrophic streams. The correspondence among the three assemblage TWINSPAN groupings was moderate, ranging from 51 to 57%. The similarity across the four major group types was the highest among large eutrophic stream and acid stream assemblages, and the lowest among small eutrophic stream assemblages. Stepwise discriminant function analysis revealed that environmental factors discriminated most effectively the diatom grouping and least effectively the fish grouping. The best environmental predictors for diatom and macroinvertebrate grouping were conductance and percent surface water, while population density was most powerful in separating the fish groups. Carbaryl was the only pesticide that correlated with macroinvertebrate grouping. Partial redundancy analyses suggested a differential dependence of freshwater communities on the scale of the environmental factors to which they respond. The role of small‐scale habitat and habitatland cover/land use interaction steadily increased across the diatom, macroinvertebrate, and fish assemblages, whereas the effect of large‐scale land cover/land use declined.  相似文献   

6.
Variable effects of sediment addition on stream benthos   总被引:7,自引:7,他引:0  
Two upper Piedmont streams were studied to determine the effects of road construction, especially sediment inputs. Benthic macroinvertebrate data suggest that the stream community responded to sediment additions in two different ways. Under high flow conditions the benthic fauna occurs mainly on rocky substrates. As sediment is added to a stream the area of available rock habitat decreases, with a corresponding decrease in benthic density. There is, however, little change in community structure. Under low flow conditions, stable-sand areas may support high densities of certain taxa. Density of the benthic macroinvertebrates in these areas may be much greater than the density recorded in control areas, and there are distinct changes in community structure.  相似文献   

7.
1. We examined small, fishless headwater streams to determine whether transport of macroinvertebrates into the littoral zone of an oligotrophic lake augmented food availability for Cottus asper, an abundant predatory fish in our study system. We sampled fish and macroinvertebrates during the recruitment and growth season of 2 years, either monthly (2004) or bi‐monthly (2005), to observe whether stream inputs increased prey availability and whether variation in total macroinvertebrate biomass was tracked by fish. 2. Observations from eight headwater streams indicated that streams did not increase the total macroinvertebrate biomass in the shallow littoral zone at stream inflows, relative to adjacent plots without stream inputs (controls). The taxonomic composition of stream macroinvertebrates drifting toward the lake differed from that in the littoral lake benthos itself, although there was no evidence of any species change in the composition of the littoral benthos brought about by stream inputs. 3. Although streams made no measurable contribution to the biomass or taxonomic composition of the littoral macroinvertebrate benthos, there was substantial temporal variation in biomass among the eight sites for each of the (n = 7) sample periods during which observations were made. Variation in total biomass was primarily a function of bottom slope and benthic substrata in the lake habitats. Dominant taxonomic groups were Baetidae, Ephemerellidae (two genera), Leptophlebiidae, Chironomidae (three subfamilies) and Perlodidae, although we did not determine the specific substratum affinities of each taxon. 4. Mixed effects linear models identified a significant interaction between macroinvertebrate biomass and plot type (stream inflow vs. control) associated with fish abundance. Across the observed range of macroinvertebrate biomass, fish showed a significant preference for stream inflows, but more closely tracked food availability in the controls. For young‐of‐the‐year (YOY), a negative effect of temperature was also included in the model, and we observed lower temperatures at stream inflows. However, abundance of predatory adults affected habitat selection for YOY. Lake‐bottom slope also accounted for variation in abundance in both fish models. 5. Our results suggest that the effect of fishless headwater streams on downstream fish may not always be through direct delivery of food. In this study system, fish preferred stream inflow plots, but this preference interacted with macroinvertebrate biomass in a manner that was difficult to explain. For YOY, predation risk was related to the preference for stream inflows, although the specific factor that mitigates predation risk remains poorly understood.  相似文献   

8.
We examined long-term ecological change in two Hudson River tributaries, the Wappinger and Fishkill Creek watersheds in Dutchess County, New York State. Fish data spanning 65 years (1936, 1988, 1992, and 2001) and shorter term macroinvertebrate data (1988, 2001) were used to assess the influence of land use practices. Between 1988 and 2001, macroinvertebrate index Biotic Assessment Profile (BAP) improved by 113–165% in the Fishkill Creek watershed, and fish Index of Biotic Integrity (IBI) improved by 117–140%. Fish IBI and fish species richness were significantly different (p < 0.01) between the watersheds, with Wappinger Creek in better condition. Long-term fish IBI scores showed degradation in both watersheds since the 1930s. Changes in species composition suggest community homogenization on par with overall changes in the fish fauna of New York. Most notable were increases in tolerant species and declines in intolerant or moderately tolerant species. Whereas Fishkill Creek IBIs showed decline in 1988 relative to 1936, followed by improvement, Wappinger Creek declined monotonically in environmental quality. Development has intensified in both watersheds, but Fishkill Creek is improving while Wappinger Creek watershed is undergoing less mitigated degradation. We find that older, semi-quantitative data can be used to construct environmental quality indicators, and can be of great use for measuring long-term change.  相似文献   

9.
1. To examine the effects of forest harvest practices on headwater stream macroinvertebrates, we compiled a 167 site database with macroinvertebrate, fish, physical habitat and catchment land cover data from the three forested ecoregions in western Oregon. For our analysis, headwater streams were defined by catchment areas <10 km2 and perennial water during summer low flows. Almost all sites in the database were selected using a randomised survey design, constituting a representative sample of headwater streams in these ecoregions. 2. Macroinvertebrate taxonomic and functional feeding group composition were very similar among the three ecoregions in the study area (Coast Range, Cascades and Klamath Mountains). On average, 55% of the individuals at each site were in the orders Ephemeroptera, Plecoptera or Trichoptera. Dipteran taxa (mostly chironomids) accounted for another 34%. At almost all sites, non‐insects made up <10% of the macroinvertebrate assemblage. Almost half (49%) of the assemblages were collectors; remaining individuals were about evenly divided among scrapers, shredders and predators. 3. There were 189 different macroinvertebrate taxa at the 167 sites with richness at individual sites ranging from 7 to 71 taxa. Ordination by non‐metric multidimensional scaling revealed a strong association between % Ephemeroptera, especially Baetis, and site scores along the first axis. This axis was also strongly related to % coarse substratum and fast water habitat. The second axis was strongly related to % intolerant individuals, site slope and altitude. No strong relationships were evident between any ordination axis and either logging activity, presence/absence of fish, catchment size or ecoregion. 4. Based on macroinvertebrate index of biotic integrity (IBI) scores, 62% of the sites had no impairment, 31% of the sites had slight impairment and only 6% of the sites had moderate or severe impairment. IBI scores were not strongly related to forest harvest history. All four severely impaired sites and five of the seven sites with moderate impairment were lower altitude, shallower slope stream reaches located in the Coast Range with evidence of agricultural activity in their catchment or riparian zone. % sand + fine substratum was the environmental variable most strongly related to macroinvertebrate IBI.  相似文献   

10.
The study was carried out from 2007 to 2010 in two ecoregions: the Carpathians and the Central Highlands. The objectives of our survey were to test the existing biological index metric based on benthic macroinvertebrates at reference conditions in the high- and mid-altitude mountain streams of two ecoregions according to the requirements of the EU WFD and to determine which environmental factors influence the distribution of benthic macroinvertebrates. Our results revealed statistically significant differences in the values of the physical and chemical parameters of water as well as the mean values of metrics between the types of streams at the sampling sites. RDA analysis showed that the temperature of the water, pH, conductivity, the stream gradient, values of the HQA index, and altitude were the parameters most associated with the distribution of benthic macroinvertebrate taxa and the values of the metrics. The values of biological indices should be considered according to the stream typology including altitude and geology. At the reference conditions, the suggested border values of biological indices are very harsh. The values of the biological indices of most sampling sites did not correspond to the requirements of the high status in rivers. The streams at altitudes above 1,200 m a.s.l. should be treated as another river type and new reference values should be established.  相似文献   

11.
1. Ecosystems are strongly influenced by land use practices. However, identifying the mechanisms behind these influences is complicated by the many potential pathways (often indirect) between land use and ecosystems and by the long‐lasting effects of past land use. To support ecosystem restoration and conservation efforts, we need to better understand these indirect and lasting effects. 2. We constructed structural equation models (SEM) to evaluate the direct and indirect effects of contemporary (2002) land use (agriculture and development) and change in land use from 1952 to 2002 on present‐day streams (n = 190) in Maryland, U.S.A. Additional variables examined included site location, system size, altitude, per cent sand in soils, riparian condition, habitat quality, stream water NO3‐N and benthic macroinvertebrate and fish measures of stream condition. Our first SEM (2002 Land Use) included the proportions of contemporary agriculture and development in catchments in the model. The second SEM (Land Use Change) included five measures of land use change (proportion agricultural in both times, developed in both times, agricultural in 1952 and developed in 2002, forested in 1952 and developed in 2002 and agricultural in 1952 and forested in 2002). 3. The data set fit both SEMs well. The 2002 Land Use model explained 71% of variation in NO3‐N and 55%, 42% and 38% of variation in riffle quality, macroinvertebrate condition and fish condition, respectively. The Land Use Change model explained similar amounts of variation in NO3‐N (R2 = 0.72), riffle quality (R2 = 0.57) and macroinvertebrate condition (R2 = 0.44) but slightly more variation in fish condition (R2 = 0.43). 4. Both models identified pathways through which landscape variables affect stream responses, including negative direct effects of latitude on macroinvertebrate and fish conditions and positive direct and indirect effects of altitude on NO3‐N, riffle quality and macroinvertebrate and fish conditions. The 2002 Land Use model showed contemporary development and agriculture had positive total effects on NO3‐N (both through direct pathways); contemporary development had negative effects on macroinvertebrate condition. The Land Use Change model showed that contemporary developed land that was forested in 1952 had no effects on NO3‐N; current developed land that was developed or agricultural in 1952 showed positive effects on NO3‐N. Forests that were agricultural in 1952 had negative effects on NO3‐N, suggesting reduced NO3‐N export with reforestation. The Land Use Change model also showed negative total effects of all types of contemporary developed land (developed, agricultural or forested in 1952) on benthic condition. Developed land that was forested in 1952 had negative effects on fish condition. Forest sites that were agricultural in 1952 had negative effects on fish and macroinvertebrate conditions, suggesting a long‐term imprint of abandoned agriculture in stream communities. 5. Our analyses (i) identified multiple indirect effects of contemporary land use on streams, (ii) showed that current land uses with different land use histories can exhibit different effects on streams and (iii) demonstrated an imprint of land use lasting >50 years. Knowledge of these indirect and long‐term effects of land use will help to conserve and restore streams.  相似文献   

12.
Biological indicators based on fish assemblage characteristics are used to assess stream condition worldwide. Fish-based bioassessment poses challenges in Southern New England, the USA, due to the effects of within-watershed thermal gradients on fish assemblage types, low regional species richness, and lack of minimally disturbed sites. Dual multi-metric indices (MMI) of biological condition were developed for wadeable streams based on fish assemblage characteristics sampled across watershed landscapes with varying levels of human disturbance. A coldwater MMI was developed using streams with drainage area of ≤15 km2, and a mixed-water MMI for streams with drainage areas of >15 km2. For each MMI development, candidate metrics represented by ecological classes were sequentially tested by metric range, within-year precision, correlation with stream size, responsiveness to landscape-level human disturbances, and redundancy. Resultant coldwater and mixed-water MMI were composed of 5 and 7 metrics, respectively. Stream sites tended to score similarly when the two MMI were applied to transitional sites, i.e., drainage areas of 5–40 km2. However, some sites received high scores from the mixed-water MMI and intermediate scores from the coldwater MMI. It was thus difficult to ascertain high-quality mixed-water streams from potential coldwater streams which currently support mixed-water assemblages due to ecological degradation. High-quality coldwater streams were restricted to stream sites with drainage areas ≤15 km2. The newly developed fish-based MMI will serve as a useful management tool and the dual-MMI development approach may be applicable to other regions with thermal gradients that transition from coldwater to warmwater within watersheds.  相似文献   

13.
Summary Seasonal and spatial patterns of benthic invertebrate abundance were examined in relation to benthic detritus in Monument Creek, an Alaskan subarctic stream. The total macroinvertebrate fauna showed a mid-summer low in abundance, increasing to seasonal highs in winter/early spring (November/May). Shredders were a small portion of the benthic fauna or leaf pack fauna in summer but increased rapidly (in biovolume) following autumnal leaf fall to dominate the fauna by early winter (October/November). Abundance was strongly correlated with quantity of detritus in the sample. Comparison of benthic macroinvertebrate densities from Alaskan streams with comparable data from temperate zone streams shows that Alaskan streams are similar to temperate zone streams in range of abundance. Each unit of benthic detritus in Monument Creek is associated with a relatively large number of small (low individual biomass) shredders compared to streams in temperate regions. Detrital resources in this subarctic stream were meager, compared to temperate streams, and appeared to strongly influence the spatial and temporal patterns of detritivores.  相似文献   

14.
1. Macroinvertebrate production and macrophyte growth were studied in logged and unlogged sections of a sand‐bottomed, low‐gradient, blackwater stream on the Coastal Plain of Virginia, U.S.A. A section of the catchment had been clear‐cut 3 years prior to sampling. No logging occurred in the upstream area of the catchment, which had experienced almost no land disturbance by humans for over 100 years. 2. A primary difference among the logged and unlogged sections of the stream was in the abundance of macrophytes. The combined biomass of Sparganium americanum and of Chara sp. was over 300‐times greater in the logged than the unlogged section. 3. Annual macroinvertebrate production in the sediment was higher in the unlogged section (41 g dry mass m–2) than in the logged section (25 g m–2). 4. Annual macroinvertebrate production on Sparganium was higher in the logged section (10 g m–2 of plant surface area) than in the unlogged section (6 g m–2). Annual production associated with Chara, which occurred only in the logged section, was 196 g m–2 of stream bottom covered by this plant. 5. Whole‐stream annual macroinvertebrate production, calculated by summing habitat‐specific production that was weighted by habitat availability, was greater in the logged section (103 g m–2) than in the unlogged section (41 g m–2). Sediments supported 99% of the annual production in the unlogged section, whereas macrophytes supported 76% in the logged section. 6. Much of the additional macroinvertebrate production in the logged section was by collector‐filterers living on macrophytes. Production by collector‐gatherers was also greater in the logged section, whereas production by other functional feeding groups changed little with logging. 7. Although logging along high‐gradient, rocky streams also results in increased macroinvertebrate production, that increase often is stimulated by greater periphyton growth rather than the macrophyte growth observed in this low‐gradient stream.  相似文献   

15.
A number of biological approaches are commonly used to assess the ecological integrity of stream ecosystems. Recently, it is becoming increasingly common to use multiple organism groups in bioassessment. Advocates of the multiple organism approach argue that the use of different organism groups should strengthen inference-based models and ultimately result in lower assessment error, while opponents argue that organism groups often respond similarly to stress implying a high degree of redundancy. Using fish, macroinvertebrate, macrophyte and benthic diatom data, site-specific parameters (e.g., water chemistry and substratum) and catchment variables from European mountain (n = 77) and lowland (n = 85) streams we evaluated the discriminatory power and uncertainty associated with the use of a number of biological metrics commonly used in stream assessment. The primary environmental gradient for both streams types was land use and nutrient enrichment. Secondary and tertiary gradients were related to habitat quality or alterations in hydromorphology. Benthic diatom and macroinvertebrate metrics showed high discriminatory power (R2 values often >0.50) and low error (<30%) with the primary (nutrient) gradient, while both fish and macrophyte metrics performed relatively poorly. Conversely, both fish and macrophyte metrics showed higher response (high coefficients of determination) than either benthic diatom or macroinvertebrate metrics to the second (e.g., alteration in habitat/hydromorphology) gradient. However, the discriminatory power and error associated with individual metrics varied markedly, indicating that caution should be exercised when selecting the ‘best’ organism group or metric to monitor stress.  相似文献   

16.
Information on the ecology of New Guinea streams is meagre, and data are needed on the trophic basis of aquatic production in rivers such as the Sepik in Papua New Guinea which have low fish yields. This study investigates the relationship between riparian shading (from savanna grassland to primary rainforest), algal and detrital food, and macroinvertebrate abundance and community structure in 6 Sepik River tributary streams. A particular aim was to elucidate macroinvertebrate community responses to changes in riparian conditions. All streams supported diverse benthic communities, but morphospecies richness (overall total 64) was less than in streams on the tropical Asian mainland; population densities of benthic invertebrates, by contrast, were similar to those recorded elsewhere. Low diversity could reflect limited taxonomic penetration, but may result from the absence of major groups (Plecoptera, Heptageniidae, Ephemerellidae, Psephenidae, Megaloptera, etc.) which occur on the Asian mainland. Population densities of all 19 of the most abundant macroinvertebrate taxa varied significantly among the 6 study streams, but community composition in each was broadly similar with dominance by Baetidae and (in order of decreasing importance), Leptophlebiidae, Orthocladiinae, Elmidae and Hydropsychidae. Principal components analysis (PCA) undertaken on counts of abundant macroinvertebrate taxa clearly separated samples taken in two streams from the rest. Both streams contained high detrital standing stocks and one was completely shaded by rainforest. Stepwise multiple-regression analysis indicated that population densities of the majority of abundant taxa (11 out of 19) across streams (10 samples per stream; n = 60) were influenced by algae and/or detritus, although standing stocks of these variables were not clearly related to riparian conditions. When regression analysis was repeated on mean counts of taxa per stream (dependent variables) versus features of each stream as a whole (thus n = 6), % shading and detritus were the independent variables yielding significant regression models most frequently, but pH, total-nitrogen loads and algae were also significant predictors of faunal abundance. Further regression analysis, undertaken separately on samples (n = 10) from each stream, confirmed the ability of algae and detritus to account for significant portions of the variance in macroinvertebrate abundance, but the significance of these variables varied among streams with the consequence that responses of individual taxa to algae or detritus was site-specific.Community functional organization — revealed by investigation of macroinvertebrate functional feeding groups (FFGs) — was rather conservative, and streams were codominated by collector-gatherers (mean across 6 streams = 43%) and grazers (36%), followed by filter-feeders (15%) and predators (7%). The shredder FFG was species-poor and comprised only 0.4% of total macroinvertebrate populations; shredders did not exceed 2% of benthic populations in any stream. PCA of FFG abundance data was characterized by poor separation among streams, although there was some evidence of clustering of samples from unshaded sites. The first 2 PCA axes accounted for 84% of the variation in the data suggesting that the poor separation resulted from the general similarity of FFG representation among streams. Although stepwise multiple-regression analysis indicated that algae and detritus accounted for significant proportions of the variations in population density and relative abundance of some FFGs, the response of community functional organization to changes in riparian conditions and algal and detrital food base was weak — unlike the deterministic responses that may be typical of north-temperate streams.  相似文献   

17.
Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003–2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44–56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful indicators of ecosystem effects and potential recovery at the local and regional scale.  相似文献   

18.
We examined patterns of concordance between macroinvertebrate and fish communities among adventitious and ordinate tributaries of the Monongahela River in southwestern Pennsylvania in order to determine their efficacy as mutual surrogates for the assessment of ecosystem integrity. Fish, macroinvertebrates, and 19 water quality parameters were sampled from 20 streams. Collected data were analyzed by principal components analysis, redundancy analysis, and Ward’s distance clustering matrices to determine degrees of community concordance and similarity. Fish and macroinvertebrate communities were assessed utilizing Indices of Biotic Integrity (IBI) in order to compare stream ecosystem health as expressed by each index. Adventitious and ordinate macroinvertebrate communities largely clustered in like groups with adventitious tributaries dominated by the crustacean Gammarus sp. and ordinate streams dominated by the trichopteran, Hydropsyche sp. Adventitious communities were strongly influenced by elevated total alkalinity and total suspended solids; ordinate communities by contrast to elevated total organic carbon and specific conductance. Fish communities showed no significant relationship to water quality parameters among either tributary type, but often grouped with their nearest geographic neighbor. The respective indices revealed a discord between the two communities suggesting that neither community serves as a surrogate for the other as an indicator of stream health in this basin. Both communities appeared to be driven by differences in local environmental conditions.  相似文献   

19.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

20.
Several methods for calculating indices of biological integrity (IBIs) have been developed for different ecogeographic regions of the world. All of them calculate IBI scores by comparing against reference sites or historical data on fish assemblage composition. Because of intensive agriculture and urbanization in our study area, we located no reference sites, and historical information about fish assemblage composition did not exist. Instead, we developed hypothetical reference scores based on seasonal electrofishing surveys at six study sites in adjacent but geomorphologically different watersheds. Our IBI included 10 metrics that varied with degree of degradation. We found that Shannon–Wiener indices varied significantly between seasons, indicating significant changes in species composition. Therefore, we calculated seasonal IBI scores also, but these did not significantly differ from each streams general IBI score, which was calculated on the basis of four samples per site. General stream IBI scores reflected differing levels of anthropogenic disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号