首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Even though selective tooth agenesis is the most common developmental anomaly of human dentition, its genetic background still remains poorly understood. To date, familial as well as sporadic forms of both hypodontia and oligodontia have been associated with mutations or polymorphisms of MSX1, PAX9, AXIN2 and TGFa, whose protein products play a crucial role in odontogenesis. In the present report we described a novel mutation of MSX1, which might be responsible for the lack of 14 permanent teeth in our proband. However, this c.581C>T transition, localized in a highly conserved homeobox sequence of MSX1, was identified also in 2 healthy individuals from the proband's family. Our finding suggests that this transition might be the first described mutation of MSX1 that might be responsible for oligodontia and showing incomplete penetrance. It may also support the view that this common anomaly of human dentition might be an oligogenic trait caused by simultaneous mutations of different genes.  相似文献   

2.
Oligodontia is defined as the congenital absence of six or more permanent teeth, excluding the third molars. Oligodontia may contribute to masticatory dysfunction, speech alteration, aesthetic problems and malocclusion. Numerous gene mutations have been association with oligodontia. In the present study, we identified a de novo AXIN2 missense mutation (c.314T>G) in a Chinese individual with non-syndromic oligodontia. This mutation results in the substitution of Val at residue 105 for Gly (p.Val105Gly); residue 105 is located in the highly conserved regulator of G protein signaling (RGS) domain of the AXIN2 protein. This is the first report indicating that a mutation in the RGS domain of AXIN2 is responsible for non-syndromic oligodontia. Our study supports the relationship between AXIN2 mutation and non-syndromic oligodontia and extends the mutation spectrum of the AXIN2 gene.  相似文献   

3.
Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs8], c.1779dupT [p.Glu594], and c.2224_2225dupTT [p.Leu742Phefs7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein’s signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/β-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics.  相似文献   

4.
5.
Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes.  相似文献   

6.
BACKGROUND: AXIN2 and CDH1 genes play important roles during craniofacial morphogenesis. Mutations in these genes have been described in families presenting colorectal cancer and tooth agenesis, and gastric cancer and cleft lip/palate (CL/P). Oral clefts have been associated with tooth agenesis. We investigated if AXIN2 and CDH1 polymorphisms were associated with clefts or with any associated dental subphenotypes. METHODS: Markers in AXIN2 and CDH1 were genotyped using Taqman chemistry in a sample cohort comprised of 500 cleft individuals and 500 unrelated controls. RESULTS: Comparison between cleft and control groups showed a trend for association for AXIN2 with incomplete cleft palate (p = .006) and CDH1 with unilateral CL/P (p = .03 for left CL/P and p = .04 for right CL/P). Comparison of cleft subphenotypes with tooth agenesis and controls revealed borderline associations for CDH1 (p = .008) and AXIN2 (p = .01) with unilateral right CL/P with tooth agenesis. CONCLUSIONS: We observed only borderline results for the association of AXIN2 and CDH1 with CL/P with and without tooth agenesis. Nevertheless, implication of these genes in the simultaneous occurrence of CL/P and cancer, and in tooth agenesis and cancer, is rather intriguing and warrants further investigations with other geographic and ethnic populations. Birth Defects Research (Part A), 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
8.
Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency.  相似文献   

9.
Tooth agenesis is the most common developmental dental anomaly. Absence of one or two permanent teeth is found in the majority of affected subjects. Very few patients suffer severe tooth agenesis. Recent studies revealed that WNT10A gene mutations caused syndromic and isolated severe tooth agenesis. In this study, to determine the contribution of WNT10A variants in different severities of tooth agenesis, we investigated the association between WNT10A variants and non-syndromic tooth agenesis in a Chinese population consisting of 505 tooth agenesis patients and 451 normal controls. Twenty-three novel non-synonymous variants were identified. WNT10A variants were detected in 15.8 % (75/474) of patients with 1–3 missing teeth and 51.6 % (16/31) of patients with 4 or more missing teeth. As compared with a frequency of 3.1 % in individuals with full dentition, variant allele frequencies were significantly elevated in both groups with tooth agenesis (p values of 1.00 × 10?6 and 3.89 × 10?23, respectively). Our findings showed that WNT10A variants were associated with non-syndromic tooth agenesis from mild to severe tooth agenesis, and the more severe tooth agenesis, the stronger association. Biallelic genotypes of WNT10A variants may have a pathogenic effect on tooth development. Presence of a single variant allele would be predisposing for causation with low penetrance. Together with WNT10A variant, there should be other genetic or environmental factors leading to biallelic variant-related variable clinical manifestations and single allele variant-related low penetrance. The frequent missing tooth positions in the WNT10A-related cases were consistent with that in the general population, suggesting WNT10A plays a critically important role in the etiology of general tooth agenesis.  相似文献   

10.

Background

Dental agenesis is the most common, often heritable, developmental anomaly in humans. Although WNT10A gene mutations are known to cause rare syndromes associated with tooth agenesis, including onycho-odontodermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), hypohidrotic ectodermal dysplasia (HED), and more than half of the cases of isolated oligodontia recently, the genotype-phenotype correlations and the mode of inheritance of WNT10A mutations remain unclear. The phenotypic expression with WNT10A mutations shows a high degree of variability, suggesting that other genes might function with WNT10A in regulating ectodermal organ development. Moreover, the involvement of mutations in other genes, such as EDA, which is also associated with HED and isolated tooth agenesis, is not clear. Therefore, we hypothesized that EDA mutations interact with WNT10A mutations to play a role in tooth agenesis. Additionally, EDA, EDAR, and EDARADD encode signaling molecules in the Eda/Edar/NF-κB signaling pathways, we also checked EDAR and EDARADD in this study.

Methods

WNT10A, EDA, EDAR and EDARADD were sequenced in 88 patients with isolated oligodontia and 26 patients with syndromic tooth agenesis. The structure of two mutated WNT10A and two mutated EDA proteins was analyzed.

Results

Digenic mutations of both WNT10A and EDA were identified in 2 of 88 (2.27%) isolated oligodontia cases and 4 of 26 (15.38%) syndromic tooth agenesis cases. No mutation in EDAR or EDARADD gene was found.

Conclusions

WNT10A and EDA digenic mutations could result in oligodontia and syndromic tooth agenesis in the Chinese population. Moreover, our results will greatly expand the genotypic spectrum of tooth agenesis.  相似文献   

11.
12.
Variations in tooth number in children, each of whom had supernumerary teeth and agenesis of teeth, is described. Among the 11, seven had cleft lip and palate, and two had clefting syndromes; two children had dental anomalies only. Only children who had both supernumerary teeth and congenitally missing teeth outside the area of the cleft alveolus were included. Concomitant hypodontia and hyperdontia were observed in the same dentition in nine subjects, in the same jaw in eight subjects, and in the same jaw quadrant in only three subjects. Supernumerary teeth and agenesis of teeth were observed simultaneously more often in the permanent dentitions than in the deciduous dentitions or in both dentitions simultaneously. The overall number of supernumeraries was 10 in the deciduous dentition and 14 in the permanent dentition of the 11 subjects. The number of congenitally absent teeth was 14 in the deciduous dentition and 40 in the permanent dentition. The etiology of concomitant hypodontia and hyperdontia is difficult to explain. It may result from disturbances in migration, proliferation, and differentiation of neural crest cells or interactions between the epithelial and mesenchymal cells during the initiation of odontogenesis.  相似文献   

13.
14.
15.
Axin在肿瘤发生中的作用机制   总被引:2,自引:0,他引:2  
阐明肿瘤发生机制的细胞信号转导途径的研究是当今生物医学领域研究的热点。Axin是一个肿瘤抑制因子,它以构架蛋白的形式在Wnt、JNK、p53、TGF-β、G蛋白信号转导途径等众多信号转导途径中参与细胞生长、增殖、分化、癌变和凋亡等多种重要细胞命运的调控过程。现从Axin的发现、Axin通过多种信号转导途径抑制肿瘤发生和AXIN1基因突变与肿瘤发生之间的关系这三个方面介绍肿瘤抑制因子Axin与肿瘤之间的研究进展。  相似文献   

16.
Ectodermal dysplasia syndromes affect the development of several organs, including hair, teeth, and glands. The recent cloning of two genes responsible for these syndromes has led to the identification of a novel TNF family ligand, ectodysplasin, and TNF receptor, edar. This has indicated a developmental regulatory role for TNFs for the first time. Our in situ hybridization analysis of the expression of ectodysplasin (encoded by the Tabby gene) and edar (encoded by the downless gene) during mouse tooth morphogenesis showed that they are expressed in complementary patterns exclusively in ectodermal tissue layer. Edar was expressed reiteratively in signaling centers regulating key steps in morphogenesis. The analysis of the effects of eight signaling molecules in the TGFbeta, FGF, Hh, Wnt, and EGF families in tooth explant cultures revealed that the expression of edar was induced by activinbetaA, whereas Wnt6 induced ectodysplasin expression. Moreover, ectodysplasin expression was downregulated in branchial arch epithelium and in tooth germs of Lef1 mutant mice, suggesting that signaling by ectodysplasin is regulated by LEF-1-mediated Wnt signals. The analysis of the signaling centers in tooth germs of Tabby mice (ectodysplasin null mutants) indicated that in the absence of ectodysplasin the signaling centers were small. However, no downstream targets of ectodysplasin signaling were identified among several genes expressed in the signaling centers. We conclude that ectodysplasin functions as a planar signal between ectodermal compartments and regulates the function, but not the induction, of epithelial signaling centers. This TNF signaling is tightly associated with epithelial-mesenchymal interactions and with other signaling pathways regulating organogenesis. We suggest that activin signaling from mesenchyme induces the expression of the TNF receptor edar in the epithelial signaling centers, thus making them responsive to Wnt-induced ectodysplasin from the nearby ectoderm. This is the first demonstration of integration of the Wnt, activin, and TNF signaling pathways.  相似文献   

17.
Most dentate vertebrates, from fish to humans, replace their teeth and yet the molecular basis of tooth replacement is poorly understood. Canonical Wnt signaling regulates tooth number in mice and humans, but it is unclear what role it plays in tooth replacement as it naturally occurs. To clarify this, we characterized Wnt signaling activity in the dental tissues of the ball python Python regius. This species replaces teeth throughout life (polyphyodonty) and in the same manner as in humans, i.e., sequential budding of teeth from the tip of the dental lamina. From initiation stage onwards, canonical Wnt read-out genes (Lef1 and Axin2) are persistently expressed by cells in the dental lamina tip and surrounding mesenchyme. This implies that molecular signaling at work during dental initiation carries over to tooth replacement. We show that canonical Wnt signaling promotes cell proliferation in python dental tissues and that by confining Wnt activity in the dental lamina the structure extends instead of thickens. Presumably, lamina extension creates space between successive tooth buds, ensuring that tooth replacement occurs in an ordered manner. We suggest that hedgehog signaling confines Wnt activity in the dental epithelium by direct planar repression and, during tooth replacement stages, by negatively regulating BMP levels in the dental mesenchyme. Finally, we propose that Wnt-active cells at the extending tip of the python dental lamina represent the immediate descendents of putative stem cells housed in the lingual face of the lamina, similar to what we have recently described for another polyphyodont squamate species.  相似文献   

18.
19.
Nonsyndromic hypodontia is a congenital absence of less than six permanent teeth, with a most common subtype maxillary lateral incisor agenesis (MLIA). Mutations in several genes have been described in severe tooth agenesis. The aim of this study was to search for the variants in wingless-type MMTV-integration site family member (WNT10A), paired box 9 (PAX9) and axis inhibitor 2 (AXIN2) genes, and investigate their potential role in the pathogenesis of non-syndromic hypodontia. Clinical examination and panoramic radiograph were performed in the cohort of 60 unrelated Slovak patients of Caucasian origin with nonsyndromic hypodontia including 37 MLIA cases and 48 healthy controls. Genomic DNA was isolated from buccal swabs and Sanger sequencing of WNT10A, PAX9 and AXIN2 was performed. Altogether, we identified 23 single-nucleotide variants, of which five were novel. We have found three rare nonsynonymous variants in WNT10A (p.Gly165Arg; p.Gly213Ser and p.Phe228Ile) in eight (13.33%) of 60 patients. Analysis showed potentially damaged WNT10A variant p.Phe228Ile predominantly occurred only in MLIA patients, and with a dominant form of tooth agenesis (odds ratio \(({\hbox {OR}}_{\mathrm{dom}}) = 9.841\); \(P=0.045\); 95% confidence interval (CI) 0.492–196.701; \({\hbox {OR}}_{\mathrm{rec}} = 0.773\); \(P =1.000\); 95% CI 0.015–39.877). In addition, the WNT10A variant p.Phe228Ile showed a trend associated with familial nonsyndromic hypodontia (\(P =0.024\); OR = 1.20; 95% CI 0.97–1.48). After Bonferroni correction, these effects remained with borderline tendencies. Using a 3D WNT10A protein model, we demonstrated that the variant Phe228Ile changes the protein secondary structure. In PAX9 and AXIN2, common variants were detected. Our findings suggest that the identified WNT10A variant p.Phe228Ile could represent risk for the inherited nonsyndromic hypodontia underlying MLIA. However, further study in different populations is required.  相似文献   

20.
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号