首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Abstract A polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) assay developed for identification of five species of the Anopheles minimus Theobald group and a related mosquito species of the Myzomyia Series (Diptera: Culicidae) was applied to morphologically identified adult female specimens collected in Ratanakiri Province, north‐eastern Cambodia. In addition to finding An. aconitus Dönitz, An. minimus species A and An. pampanai Büttiker & Beales, some specimens showed a new restriction banding pattern. Siblings of specimens that exhibited this new PCR‐RFLP pattern were morphologically identified as An. culicifacies James sensu lato. Based on nucleotide sequences of the ribonuclear DNA internal transcribed spacer 2 region (ITS2) and the mitochondrial cytochrome oxidase I gene (COI), these specimens were recognized as An. culicifacies species B (sensu Green & Miles, 1980 ), the first confirmed record of the An. culicifacies complex from Cambodia. This study shows that the PCR‐RFLP assay can detect species not included in the initial set‐up and is capable of identifying at least seven species of the Myzomyia Series, allowing better definition of those malaria vector and non‐vector anophelines in South‐east Asia.  相似文献   

2.
Abstract. Mosquitoes of the Anopheles minimus group (Diptera: Culicidae) from nine Provinces of southern China were identified morphologically and by molecular characterization, using single‐strand conformation polymorphisms (SSCPs) and sequence data for the D3 region of the 28S ribosomal DNA and the mitochondrial COII locus. Species A and C (sensu Green et al., 1990 ) of the An. minimus complex were found to be sympatric in Yunnan Province. Species A occurs eastward from Yunnan through southern Guangxi, Hainan, Guangdong and Taiwan Provinces, whereas species C occurs northward to northern Guangxi, Guizhou and Sichuan Provinces. Morphological and molecular evidence (based on specimens from the field and four isofemale lines) shows that An. minimus forms A and B (sensu Yu & Li, 1984 ) are morphological variants of species A, which is accepted as An. minimus Theobald sensu stricto (type‐locality: Pokfulam, Hong Kong). The so‐called subspecies x of An. minimus (sensu Baba, 1950 ) is reinterpreted as An. aconitus Dönitz. The distribution and vector status of members of the An. minimus group are discussed in relation to the historical and current transmission of malaria and filariasis in China. Both An. minimus A and C have been implicated as widespread vectors of malaria, whereas only species A has been found in Hainan, where An. minimus s.l. was a vector of Bancroftian filariasis. The presence of An. aconitus in Hainan and Yunnan Provinces is confirmed, but the occurrence of An. varuna Iyengar and An. fluviatilis James, which were previously recorded in China, could not be verified.  相似文献   

3.
Intra‐ and interspecific molecular variation were investigated in four members of the Minimus Group of Anopheles subgenus Cellia: An. aconitus, An. varuna, An. minimus A and An. minimus C. DNA sequence divergence between these species at a mitochondrial locus (cytochrome oxidase II) and at three nuclear loci (ITS2 and D3 regions of rDNA and guanylate cyclase) is reported. The data confirm the presence of two cryptic species, A and C, within An. minimus and provide evidence for the existence of a third species. Anopheles minimus A and C are estimated to have diverged 0.57–1.5 million years ago. The discrepancy observed using the guanylate cyclase intron, which is the fastest evolving region known in the Gambiae Complex but is relatively slowly evolving in the Minimus Group, is discussed. The long‐term effective population sizes of An. minimus A and C are estimated to be in their millions, with that of species A being approximately twice the size of species C. This implies that An. minimus C has a much wider distribution than currently recognized, with possible widespread implications for vector control. No evidence was found for population structuring in either species A or C: there was greater variation of mitochondrial haplotypes within than among localities. The phylogenetic relationships of Oriental members of the Myzomyia Series are reconstructed.  相似文献   

4.
We determined the species diversity, blood‐feeding behavior, and host preference of Anopheles mosquitoes in two malaria endemic areas of Tak (Mae Sot District) and Mae Hong Son (Sop Moei District) Provinces, located along the Thai border with Myanmar, during a consecutive two‐year period. Anopheline mosquitoes were collected using indoor and outdoor human‐landing captures and outdoor cow‐baited collections. Mosquitoes were initially identified using morphological characters, followed by the appropriate multiplex AS‐PCR assay for the identification of sibling species within Anopheles (Cellia) complexes and groups present. Real‐time PCR was performed for parasite‐specific detection in mosquitoes (Plasmodium spp. and Wuchereria bancrofti). A total of 7,129 Anopheles females were captured, 3,939 from Mae Sot and 3,190 from Sop Moei, with 58.6% and 37% of all anophelines identified as An. minimus, respectively. All three malaria vector complexes were detected in both areas. One species within the Minimus Complex (An. minimus) was present along with two related species in the Funestus Group, (An. aconitus, An. varuna), two species within the Dirus Complex (An. dirus, An. baimaii), and four species within the Maculatus Group (An. maculatus, An. sawadwongporni, An. pseudowillmori, and An. dravidicus). The trophic behavior of An. minimus, An. dirus, An. baimaii, An. maculatus, and An. sawadwongporni are described herein. The highest An. minimus densities were detected from February through April of both years. One specimen of An. minimus from Mae Sot was found positive for Plasmodium vivax.  相似文献   

5.
Anopheles fluviatilis andAn. minimus complexes, each comprising of at least three sibling species, are closely related and important malaria vectors in Oriental Region. RecentlyAn. fluviatilis species S, which is a highly efficient malaria vector in India, has been made conspecific withAn. minimus species C (senior synonym) on the basis of homology in 335 base pair nucleotide sequence of D3 domain of 28S ribosomal DNA(rDNA). We examined the conspecificity of these two nominal species by obtaining and analysing the DNA sequences of nuclear ribosomal loci internal transcribed spacer 2 (ITS2) and D2-D3 domain of 28S rDNA (28S-D2/D3) from those ofAn. fluviatilis S andAn. minimus C. We found that the sequences ofAn. fluviatilis S are appreciably different from those ofAn. minimus C with pair-wise distance (Kimura-2-parametre model) of 3.6 and 0.7% for loci ITS2 and 28S-D2/D3, respectively. Pair-wise distance and phylogenetic analyses using ITS2 sequences of members of Minimus and Fluviatilis Complexes revealedthat An. fluviatilis S is distantly related toAn. minimus C as compared to any other members of the Fluviatilis Complex. These findings suggest that the two nominal species,An. fluviatilis S andAn. minimus C, do not merit synonymy. The study also confirms that the reported speciesAn. fluviatilis X is synonym with species S.  相似文献   

6.
ABSTRACT. Sympatric occurrence of homozygotes for two electro-morphs controlled by a locus for octanol dehydrogenase, and the absence of heterozygotes, at two localities, indicates two isomorphic species within the taxon Anopheles minimus Theobald in Thailand. This view is supported by significant, relative deficiences of heterozygotes at other electromorphic loci. Gene frequency data are reported for seven electro-morphic loci in An.minimus sensu lato from eleven localities: one of the newly recognized species predominated in all but one locality and the second was confined to two localities. This species pair of An.minimus s.l. was clearly distinguished from An.aconitus Donitz, An.pampanai Biittiker & Beales and An.varuna Iyengar, three species closely related to An.minimus s.l. in the series Myzomyia of Anopheles subgenus Cellia.  相似文献   

7.
Abstract. Among Oriental anopheline mosquitoes (Diptera: Culicidae), several major vectors of forest malaria belong to the group of Anopheles (Cellia) leucosphyrus Dönitz. We have morphologically examined representative material (> 8000 specimens from seven countries) for taxonomic revision of the Leucosphyrus Group. Six new species are here described from adult, pupal and larval stages (with illustrations of immature stages) and formally named as follows: An. latens n. sp. (= An. leucosphyrus species A of Baimai et al., 1988b), An. cracens n. sp., An. scanloni n. sp., An. baimaii n. sp. (formerly An. dirus species B, C, D, respectively), An. mirans n. sp. and An. recens n. sp. Additionally, An. elegans (James) is redescribed and placed in the complex of An. dirus Peyton & Harrison (comprising An. baimaii, An. cracens, An. dirus, An. elegans, An. nemophilous Peyton & Ramalingam, An. scanloni and An. takasagoensis Morishita) of the Leucosphyrus Subgroup, together with An. baisasi Colless and the An. leucosphyrus complex (comprising An. balabacensis Baisas, An. introlatus Baisas, An. latens and An. leucosphyrus). Hence, the former Elegans Subgroup is renamed the Hackeri Subgroup (comprising An. hackeri Edwards, An. pujutensis Colless, An. recens and An. sulawesi Waktoedi). Distribution data and bionomics of the newly defined species are given, based on new material and published records, with discussion of morphological characters for species distinction and implications for ecology and vector roles of such species. Now these and other members of the Leucosphyrus Group are identifiable, it should be possible to clarify the medical importance and distribution of each species. Those already regarded as vectors of human malaria are: An. baimaii[Bangladesh, China (Yunnan), India (Andamans, Assam, Meghalaya, West Bengal), Myanmar, Thailand]; An. latens[Borneo (where it also transmits Bancroftian filariasis), peninsular Malaysia, Thailand]; probably An. cracens (Sumatra, peninsular Malaysia, Thailand); presumably An. scanloni (Thailand); perhaps An. elegans (the Western Ghat form of An. dirus, restricted to peninsular India); but apparently not An. recens (Sumatra) nor An. mirans[Sri Lanka and south-west India (Karnataka, Kerala, Tamil Nadu)], which is a natural vector of simian malarias. Together with typical An. balabacensis, An. dirus and An. leucosphyrus, therefore, the Leucosphyrus Group includes about seven important vectors of forest malaria, plus at least a dozen species of no known medical importance, with differential specific distributions collectively spanning > 5000 km from India to the Philippines.  相似文献   

8.
Sporozoites were detected in naturally infected sibling species of the primary rural vector Anopheles culicifacies complex in two primary health centres (PHCs) and a variant of the urban vector Anopheles stephensi in Mangalore city, Karnataka, south India while carrying out malaria outbreak investigations from 1998–2006. Sibling species of An. culicifacies were identified based on the banding patterns on ovarian polytene chromosomes, and variants of An. stephensi were identified based on the number of ridges on the egg floats. Sporozoites were detected in the salivary glands by the dissection method. Of the total 334 salivary glands of An. culicifacies dissected, 17 (5.08%) were found to be positive for sporozoites. Of the 17 positive samples, 11 were suitable for sibling species analysis; 10 were species A (an efficient vector) and 1 was species B (a poor vector). Out of 46 An. stephensi dissected, one was sporozoite positive and belonged to the type form (an efficient vector). In malaria epidemiology this observation is useful for planning an effective vector control programme, because each sibling species/variant differs in host specificity, susceptibility to malarial parasites, breeding habitats and response to insecticides.  相似文献   

9.
Utilization of multiple putatively neutral DNA markers for inferring evolutionary history of species population is considered to be the most robust approach. Molecular population genetic studies have been conducted in many species of Anopheles genus, but studies based on single nucleotide polymorphism (SNP) data are still very scarce. Anopheles minimus is one of the principal malaria vectors of Southeast (SE) Asia including the Northeastern (NE) India. Although population genetic studies with mitochondrial genetic variation data have been utilized to infer phylogeography of the SE Asian populations of this species, limited information on the population structure and demography of Indian An. minimus is available. We herewith have developed multilocus nuclear genetic approach with SNP markers located in X chromosome of An. minimus in eight Indian and two SE Asian population samples (121 individual mosquitoes in total) to infer population history and test several hypotheses on the phylogeography of this species. While the Thai population sample of An. minimus presented the highest nucleotide diversity, majority of the Indian samples were also fairly diverse. In general, An. minimus populations were moderately substructured in the distribution range covering SE Asia and NE India, largely falling under three distinct genetic clusters. Moreover, demographic expansion events could be detected in the majority of the presently studied populations of An. minimus. Additional DNA sequencing of the mitochondrial COII region in a subset of the samples (40 individual mosquitoes) corroborated the existing hypothesis of Indian An. minimus falling under the earlier reported mitochondrial lineage B.  相似文献   

10.
Baseline entomological surveys were conducted in four sentinel sites along the Thailand‐Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human‐landing catch and cow‐bait collection in four villages during the rainy season from May‐June, 2013. Mosquitoes were identified to species level by morphological characters and by AS‐PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real‐time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium‐positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66–1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, P<0.0001). Our findings highlight the diversity and complexity of the biting pattern of malaria vectors along the Thailand‐Myanmar border that represent a formidable challenge for malaria control and elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号