共查询到10条相似文献,搜索用时 62 毫秒
1.
Şerban Procheş John R. U. Wilson David M. Richardson Marcel Rejmánek 《Global Ecology and Biogeography》2012,21(5):513-523
Aim Pine trees (genus Pinus) represent an ancient lineage, naturally occurring almost exclusively in the Northern Hemisphere, but introduced and widely naturalized in both hemispheres. As large trees of interest to forestry, they attract much attention and their distribution is well documented in both indigenous and naturalized ranges. This creates an opportunity to analyse the relationship between indigenous and naturalized range sizes in the context of different levels of human usage, biological traits and the characteristics of the environments of origin. Location Global. Methods We combined and expanded pre‐existing data sets for pine species distributions and pine species traits, and used a variety of regression techniques (including generalized additive models and zero‐inflated Poisson models) to assess which variables explained naturalized and indigenous range sizes. Results Indigenous and naturalized range sizes are positively correlated but there are many notable exceptions. Some species have large indigenous ranges but small or no naturalized ranges, whereas others have small indigenous ranges, but have naturalized in many regions. Indigenous range is correlated to factors such as seed size (?), age at first reproduction (?), and latitude (+, supporting Rapoport's rule), but also to the extent of coverage of species in the forestry literature (+). Naturalized range size is strongly influenced by the extent of coverage of species in the forestry literature (+), a proxy for propagule pressure. Naturalization was also influenced by average elevation in the indigenous range (?) and age at first reproduction (?). Main conclusions The macroecological and evolutionary pressures facing plant groups are not directly transferable between indigenous and naturalized ranges. In particular, there are strong biases in species naturalization and expansion in invasive ranges that are unrelated to factors determining indigenous range size. At least for Pinus, a new set of macroecological patterns are emerging which are profoundly influenced by humans. 相似文献
2.
Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale 总被引:11,自引:0,他引:11
WILFRIED THUILLER † DAVID M. RICHARDSON‡ PETR PYEK§¶ GUY F. MIDGLEY GREG O. HUGHES MATHIEU ROUGET 《Global Change Biology》2005,11(12):2234-2250
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted. 相似文献
3.
The use of simple terms to articulate ecological concepts can confuse ideological debates and undermine management efforts. This problem is particularly acute in studies of nonindigenous species, which alternatively have been called ‘exotic’, ‘introduced’, ‘invasive’ and ‘naturalised’, among others. Attempts to redefine commonly used terminology have proven difficult because authors are often partial to particular definitions. In an attempt to form a consensus on invasion terminology, we synthesize an invasional framework based on current models that break the invasion process into a series of consecutive, obligatory stages. Unlike previous efforts, we propose a neutral terminology based on this framework. This ‘stage‐based’ terminology can be used to supplement terms with ambiguous meanings (e.g. invasive, introduced, naturalized, weedy, etc.), and thereby improve clarity of future studies. This approach is based on the concept of ‘propagule pressure’ and has the additional benefit of identifying factors affecting the success of species at each stage. Under this framework, invasions can be more objectively understood as biogeographical, rather than taxonomic, phenomena; and author preferences in the use of existing terminology can be addressed. An example of this recommended protocol might be: ‘We examined distribution data to contrast the characteristics of invasive species (stages IVa and V) and noninvasive species (stages III and IVb)’. 相似文献
4.
A new framework for predicting invasive plant species 总被引:5,自引:1,他引:5
5.
6.
Invasion by exotic trees into riparian areas has the potential to impact terrestrial and aquatic systems. To test the effect of different streamside tree species on the aquatic food web in a stream in Montana, we compared decomposition rates of leaf litter and invertebrate assemblages associated with the leaf litter of the exotic Acer platanoides and the dominant native Populus trichocarpa trees. Macroinvertebrate family richness, evenness, and diversity increased with days of aquatic processing; however, there was no effect of leaf species. Leaves of the A. platanoides were associated with 70% greater density of macroinvertebrates of the family Nemouridae. This family consists primarily of detritivores and had the greatest overall density and frequency of occurrence relative to other macroinvertebrate families. The density of a family of predatory macroinvertebrates (Rhyacophilidae) was also generally (73%) greater in association with A. platanoides than P. trichocarpa leaves. The density of Ephemerellidae and Rhyacophilidae increased over time. In contrast to studies comparing leaves of exotic vs. native trees, we observed no difference in leaf decomposition rates; however, the amount of leaf inputs are likely to differ between native and invaded forests. The results indicate that replacement of native riparian trees with exotics affected the most common family of macroinvertebrates and possibly a common family of predatory macroinvertebrates (Rhyacophilidae), which may affect the detrital food web. 相似文献
7.
Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single‐stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self‐sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species. 相似文献
8.
9.
Meredith A. Zettlemoyer Elizabeth H. Schultheis Jennifer A. Lau 《Ecology letters》2019,22(8):1253-1263
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non‐native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non‐native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non‐native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non‐native species, implicating phenology as a potential trait associated with the successful establishment of non‐native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non‐natives are hypothesised to promote invasion success and population persistence, potentially benefiting non‐native over native species under climate change. 相似文献
10.
David M. Richardson Robert L. Kluge 《Perspectives in Plant Ecology, Evolution and Systematics》2008,10(3):161-177
Despite impressive efforts at clearing stands of invasive Australian Acacia species in South Africa, insufficient attention has been given to understanding the role of seed banks in the invasiveness and long-term persistence of populations. We review information on seeds of these species, considering seed production, seed rain, and the dynamics of seeds in three layers: leaf litter, and upper and lower seed banks in the soil. Many factors affect the accumulation and susceptibility to destruction of seed banks and thus the opportunities for intervention to reduce seed numbers for each of these components. Reduction of seed banks is crucial for the overall success of the multi-million dollar management initiatives against these species. Classical biological control of buds, flower and young pods has reduced the seed production of many Australian acacias in South Africa. Fire can be applied to reduce seed numbers in the leaf litter and upper seed bank in some cases, although there are serious problems associated with high fire intensities in dense acacia stands. Other options, e.g. soil inversion and solarisation, exist to exercise limited reduction of seed numbers in some situations. There is little prospect of meaningful reduction of seed numbers in the lower seed bank. Preventing the accumulation of seed banks by limiting seed production through biological control is by far the most effective means, and in almost all cases the only practical means, of reducing seed numbers. This must be an integral part of management strategies. Several invasive Australian acacias are already under effective biological control, and further work to identify additional potential agents for all the currently invasive species and potentially invasive alien species is the top priority for improving the efficiency of management programmes. 相似文献