首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
Atlastin is an integral membrane GTPase localized to the endoplasmic reticulum (ER). In vitro and in vivo analyses indicate that atlastin is a membrane fusogen capable of driving membrane fusion, suggesting a role in ER structure and maintenance. Interestingly, mutations in the human atlastin-1 gene, SPG3A, cause a form of autosomal dominant hereditary spastic paraplegia (HSP). The etiology of HSP is unclear, but two predominant forms of the disorder are caused by mutant proteins that affect ER structure, formation and maintenance in motor neurons. In this review, we describe the current knowledge about the molecular mechanism of atlastin function and its potential role in HSP. Greater understanding of the function of atlastin and associated proteins should provide important insight into normal ER biogenesis and maintenance, as well as the pathology of disease.  相似文献   

2.
Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.  相似文献   

3.
Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.  相似文献   

4.
At least 38 distinct missense mutations in the neuronal atlastin1/SPG3A GTPase are implicated in an autosomal dominant form of hereditary spastic paraplegia (HSP), a motor-neurological disorder manifested by lower limb weakness and spasticity and length-dependent axonopathy of corticospinal motor neurons. Because the atlastin GTPase is sufficient to catalyze membrane fusion and required to form the ER network, at least in nonneuronal cells, it is logically assumed that defects in ER membrane morphogenesis due to impaired fusion activity are the primary drivers of SPG3A-associated HSP. Here we analyzed a subset of established atlastin1/SPG3A disease variants using cell-based assays for atlastin-mediated ER network formation and biochemical assays for atlastin-catalyzed GTP hydrolysis, dimer formation, and membrane fusion. As anticipated, some variants exhibited clear deficits. Surprisingly however, at least two disease variants, one of which represents that most frequently identified in SPG3A HSP patients, displayed wild-type levels of activity in all assays. The same variants were also capable of co-redistributing ER-localized REEP1, a recently identified function of atlastins that requires its catalytic activity. Taken together, these findings indicate that a deficit in the membrane fusion activity of atlastin1 may be a key contributor, but is not required, for HSP causation.  相似文献   

5.
A gene responsible for an autosomal recessive form of hereditary spastic paraplegia (SPG7) was recently identified. This gene encodes paraplegin, a mitochondrial protein highly homologous to the yeast mitochondrial AAA proteases Afg3p, Rca1p, and Yme1p, which have both proteolytic and chaperone-like activities at the inner mitochondrial membrane. By screening the expressed sequence tag database, we identified and characterized a novel human gene, YME1L1 (YME1L1-like1, HGMW-approved symbol). This gene encodes a predicted protein of 716 amino acids highly similar to all mitochondrial AAA proteases and in particular to yeast Yme1p. Expression and immunofluorescence studies revealed that YME1L1 and paraplegin share a similar expression pattern and the same subcellular localization in the mitochondrial compartment. YME1L1 may represent a candidate gene for other forms of hereditary spastic paraplegia and possibly for other neurodegenerative disorders.  相似文献   

6.
Defective autophagy is associated with neurodegenerative disorders including Alzheimer, Parkinson and Huntington diseases, amyotrophic lateral sclerosis and SCA (spinocerebellar ataxias). Autophagy defects were detected also in SPG49, a complicated form of hereditary spastic paraparesis (cHSP) associated with mutations in the TECPR2 gene, suggesting a role of autophagy also in this heterogeneous group of neurodegenerative diseases. We recently found defective autophagy in SPG15, another HSP subtype associated with mutations in the ZFYVE26/SPG15 gene. Patient-derived cells (fibroblasts/lymphoblasts) carrying different ZFYVE26 mutations show accumulation of immature autophagosomes and increased MAP1LC3B-II and SQSTM1/p62 levels. These findings indicate that ZFYVE26 is a key determinant of autophagosome maturation, which is impaired when the protein is defective or absent. Replication of these findings in primary neurons supports the relevance of defective autophagy in SPG15-related neurodegeneration.  相似文献   

7.
We have identified two endoplasmic reticulum (ER)-associated Arabidopsis proteins, KMS1 and KMS2, which are conserved among most species. Fluorescent protein fusions of KMS1 localised to the ER in plant cells, and over-expression induced the formation of a membrane structure, identified as ER whorls by electron microscopy. Hydrophobicity analysis suggested that KMS1 and KMS2 are integral membrane proteins bearing six transmembrane domains. Membrane protein topology was assessed by a redox-based topology assay (ReTA) with redox-sensitive GFP and confirmed by a protease protection assay. A major loop domain between transmembrane domains 2 and 3, plus the N- and C-termini were found on the cytosolic side of the ER. A C-terminal di(tri)-lysine motif is involved in retrieval of KMS1 and deletion led to a reduction of the GFP-KMS1 signal in the ER. Over-expression of KMS1/KMS2 truncations perturbed ER and Golgi morphology and similar effects were also seen when KMS1/KMS2 were knocked-down by RNA interference. Microscopy and biochemical experiments suggested that expression of KMS1/KMS2 truncations inhibited ER to Golgi protein transport.  相似文献   

8.
Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.  相似文献   

9.
We examined the effects of wild-type and mutant atlastin-1 on vesicle transport in the endoplasmic reticulum (ER)-Golgi interface and vesicle budding from ER-derived microsomes using the temperature-sensitive reporter vesicular stomatitis virus glycoprotein (VSV-G), and the ability of purified atlastin-1 to form tubules or vesicles from protein-free phosphatidylserine liposomes. A GTPase domain mutation (T162P) altered the cellular distribution of the ER, but none of the mutations studied significantly affected transport from the ER to the Golgi apparatus. The mutations also had no significant effect on the incorporation of VSV-G into vesicles formed from ER microsomes. Atlastin-1, however, was also incorporated into microsome-derived vesicles, suggesting that it might be implicated in vesicle formation. Purified atlastin-1 transformed phosphatidylserine liposomes into branched tubules and polygonal networks of tubules and vesicles, an action inhibited by GDP and the synthetic dynamin inhibitor dynasore. The GTPase mutations T162P and R217C decreased but did not totally prevent this action; the C-terminal transmembrane domain mutation R495W was as active as the wild-type enzyme. Similar effects were observed in human embryonic kidney cells over-expressing mutant atlastin-1. We concluded that atlastin-1, like dynamin, might be implicated in membrane tubulation and vesiculation and participated in the formation as well as the function of the ER.  相似文献   

10.
Luan Z  Zhang Y  Liu A  Man Y  Cheng L  Hu G 《FEBS letters》2002,530(1-3):233-238
A novel human guanylate-binding protein (GBP) hGBP3 was identified and characterized. Similar as the two human guanylate-binding proteins hGBP1 and hGBP2, hGBP3 has the first two motifs of the three classical guanylate-binding motifs, GXXXXGKS (T) and DXXG, but lacks the N (T) KXD motif. Escherichia coli-expressed hGBP3 protein specifically binds to guanosine triphosphate (GTP). Using a yeast two-hybrid system, it was revealed that the N-terminal region of hGBP3 binds to the C-terminal regulatory domain of NIK/HGK, a member of the group I GCK (germinal center kinase) family. This interaction was confirmed by in vitro glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号