首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study employed in vitro seed culture to determine how C and N supply influence the growth (i.e. starch accumulation) and protein composition of maize (Zea mays L.) endosperm. Immature kernels were grown to maturity on liquid medium containing various concentrations of C (sucrose at 234 millimolar [low] and 468 millimolar [high]) and N (amino acid mixture ranging in N from 0 to 144 millimolar). Low C supply limited starch, but not N, accumulation in the endosperm. With high C, endosperm starch and protein content increased concomitantly as N supply increased from 0 to 13.4 millimolar. Endosperm growth was unaffected by additional N until concentrations exceeding approximately 72 millimolar reduced starch accumulation. A similar inhibition of starch deposition occurred with lower N concentrations when kernels were grown with low C. Endosperm total N content reached a point of saturation with approximately 36 millimolar N in the medium, regardless of C supply. Zein synthesis in the endosperm responded positively across all N levels, while glutelin content remained static and albumin/globulin proteins were reduced in amount when N supply was greater than 36 millimolar. A reciprocal, inverse relationship was observed in mature endosperm tissue between the concentrations of free amino acids and soluble sugars. Our data suggest that under N stress starch and protein accumulation in the endosperm are interdependent, at least in appearance, but are independent otherwise.  相似文献   

2.
Cereal kernel growth and grain yield are functions of endosperm starch accumulation. The objective of this study was to examine how various metabolic factors in developing maize (Zea mays L.) endosperm influence starch deposition. Kernels were grown in vitro on medium with: (a) zero N (−N), (b) optimum N (+N), or (c) −N from 3 to 20 days after pollination followed by +N until maturity (±N) to produce different degrees of endosperm growth and to promote an enhancement of starch synthesis midway through development. At intervals, kernels were harvested and levels of enzyme activities and carbohydrate and N constituents examined. Endosperm starch and protein accumulation were decreased in −N compared to +N kernels, but relief of N starvation increased both constituents. With greater movement of N into ±N kernels, endosperm sugar concentrations declined suggesting an inverse relationship between C and N transport. Unusually high concentrations of sugar in N stressed kernels did not appear to limit or enhance starch production. Rather, increased accumulation of starch in ±N endosperm was correlated with significant increases in the enzymatic activities of sucrose synthase and PPi-linked phosphofructokinase, and to a lessor extent hexokinase. In addition, the occurrence of specific proteins of the albumin/globulin fraction either increased, decreased, or remained unchanged in relation to starch synthesis. These data suggest that lack of N limits starch deposition in maize endosperm primarily through an influence on synthesis of key proteins.  相似文献   

3.
Boyer CD  Preiss J 《Plant physiology》1981,67(6):1141-1145
Soluble starch synthase and starch-branching enzymes in extracts from kernels of four maize genotypes were compared. Extracts from normal (nonmutant) maize were found to contain two starch synthases and three branching enzyme fractions. The different fractions could be distinguished by chromatographic properties and kinetic properties under various assay conditions. Kernels homozygous for the recessive amylose-extender (ae) allele were missing branching enzyme IIb. In addition, the citrate-stimulated activity of starch synthase I was reduced. This activity could be regenerated by the addition of branching enzyme to this fraction. No other starch synthase fractions were different from normal enzymes. Extracts from kernels homozygous for the recessive dull (du) allele were found to contain lower branching enzyme IIa and starch synthase II activities. Other fractions were not different from the normal enzymes. Analysis of extracts from kernels of the double mutant ae du indicated that the two mutants act independently. Branching enzyme IIb was absent and the citrate-stimulated reaction of starch synthase I was reduced but could be regenerated by the addition of branching enzyme (ae properties) and both branching enzyme IIa and starch synthase II were greatly reduced (du properties). Starch from ae and du endosperms contains higher amylose (66 and 42%, respectively) than normal endosperm (26%). In addition, the amylopectin fraction of ae starch is less highly branched than amylopectin from normal or du starch. The above observations suggest that the alterations of the starch may be accounted for by changes in the soluble synthase and branching enzyme fractions.  相似文献   

4.
Apical kernels of maize (Zea mays L.) ears have smaller size and lower growth rates than basal kernels. To improve our understanding of this difference, the developmental patterns of starch-synthesis-pathway enzyme activities and accumulation of sugars and starch was determined in apical- and basal-kernel endosperm of greenhouse-grown maize (cultivar Cornell 175) plants. Plants were synchronously pollinated, kernels were sampled from apical and basal ear positions throughout kernel development, and enzyme activities were measured in crude preparations. Several factors were correlated with the higher dry matter accumulation rate and larger mature kernel size of basal-kernel endosperm. During the period of cell expansion (7 to 19 days after pollination), the activity of insoluble (acid) invertase and sucose concentration in endosperm of basal kernels exceeded that in apical kernels. Soluble (alkaline) invertase was also high during this stage but was the same in endosperm of basal and apical kernels, while glucose concentration was higher in apical-kernel endosperm. During the period of maximal starch synthesis, the activities of sucrose synthase, ADP-Glc-pyrophosphorylase, and insoluble (granule-bound) ADP-Glc-starch synthase were higher in endosperm of basal than apical kernels. Soluble ADP-Glc-starch synthase, which was maximal during the early stage before starch accumulated, was the same in endosperm from apical and basal kernels. It appeared that differences in metabolic potential between apical and basal kernels were established at an early stage in kernel development.  相似文献   

5.
6.
Apical florets of maize (Zea mays L.) ears differentiate later than basal florets and form kernels which have lower dry matter accumulation rates. The purpose of this study was to determine whether increasing the temperature of apical kernels during the dry matter accumulation period would alter the difference in growth rate between apical and basal kernels. Apical regions of field-grown maize (cultivar Cornell 175) ears were heated to 25 ± 3°C from 7 days after pollination to maturity (tip-heated ears) and compared with unheated ears (control). In controls, apical-kernel endosperm had 24% smaller dry weight at maturity, lower concentration of sucrose, and lower activity of ADP-Glc starch synthase than basal-kernel endosperm, whereas ADP-Glc-pyrophosphorylase (ADPG-PPase) activities were similar. In tip-heated ears apical-kernel endosperm had the same growth rate and final weight as basal-kernel endosperm and apical kernels had higher sucrose concentrations, higher ADP-Glc starch synthase activity, and similar ADPG-PPase activity. Total grain weight per ear was not increased by tip-heating because the increase in size of apical kernels was partially offset by a slight decrease in size of the basal- and middle-position kernels. Tip-heating hastened some of the developmental events in apical kernels. ADPG-PPase and ADP-Glc starch synthase activities reached peak levels and starch concentration began rising earlier in apical kernels. However, tip-heating did not shorten the period of starch accumulation in apical kernels. The results indicate that the lower growth rate and smaller size of apical kernels are not solely determined by differences in prepollination floret development.  相似文献   

7.
Boyer CD  Preiss J 《Plant physiology》1979,64(6):1039-1042
Chromatography of extracts of maize on diethylaminoethyl-cellulose resolves starch synthase activity into two fractions (Ozbun, Hawker, Preiss 1971 Plant Physiol 48: 785-769). Only starch synthase I is capable of synthesis in the absence of added primer and the presence of 0.5 molar citrate. This enzyme fraction has been purified about 1,000-fold from maize kernels homozygous for the endosperm mutant amylose-extender (ae). Because ae endosperm lacks the starch-branching enzyme which normally purifies with starch synthase I, the final enzyme fraction was free of detectable branching enzyme activity. This allowed a detailed characterization of the citrate-stimulated reaction. The citrate-stimulated reaction was dependent upon citrate concentrations of greater than 0.1 molar. However, the reaction is not specific for citrate and malate also stimulated the reaction. Branching enzyme increased the velocity of the reaction about 4-fold but did not replace the requirement for citrate. Citrate reduced the Km for the primers amylopectin and glycogen from 122 and 595 micrograms per milliliter, respectively, to 6 and 50 micrograms per milliliter, respectively. The enzyme was found to contain 1.7 milligrams of anhydroglucose units per enzyme unit. Thus reaction mixtures contained 1 to 5 micrograms (5 to 25 micrograms per milliliter) of endogenous primer. The citrate-stimulated reaction could be explained by an increased affinity for this endogenous primer. The starch synthase reaction in the absence of primer is dependent upon several factors including endogenous primer concentration, citrate concentration as well as branching enzyme concentration.  相似文献   

8.
The significance of the glycolytic and gluconeogenic conversion of fructose-6-phosphate and fructose-1,6-bisphosphate on sugar metabolism was investigated in maize (Zea mays L.) kernels. Maximum extractable activities of the pyrophosphate (PPi) dependent phosphofructokinase, fructose-1,6-bisphosphatase, and the ATP-dependent phosphofructokinase were measured in normal and four maize genotypes, which accumulate relatively more sugars and less starch, to determine how these enzymes are affected by the genetic lesions. Normal endosperm accumulated more dry matter than the high sugar/low starch genotypes, but protein contents did not differ greatly among the genotypes. Mutation of several starch biosynthetic enzymes had little impact on the activities of PPi-dependent phosphofructokinase, fructose-1,6-bisphosphatase, and ATP-dependent phosphofructokinase, despite the altered capacity of the cell to synthesize starch. The PPi-dependent phosphofructokinase appeared to be more active toward glycolysis in all genotypes studied. Activity of the PPi-dependent phosphofructokinase in shrunken (low sucrose synthase genotype) did not differ from the activity in other genotypes, suggesting that the gluconeogenic production of PPi may not be the primary role of the enzyme. As expected, shrunken kernels contained more sugars and less starch than normal kernels throughout kernel development except at the very early stages. Developmental profiles of normal kernels also showed marked changes in the PPi-dependent phosphofructokinase activity, whereas the level of ATP-dependent phosphofructokinase activity remained relatively steady during kernel development. In addition, the ATP-dependent phosphofructokinase, and not the PPi-dependent phosphofructokinase, appeared to correlate more closely with respiration rate. These findings suggest that glycolysis catalyzed by the ATP-dependent phosphofructokinase may serve primarily to support energy production, and glycolysis catalyzed by the PPi-dependent phosphofructokinase may contribute mainly to generation of biosynthetic intermediates.  相似文献   

9.
Sucrose and Nitrogen Supplies Regulate Growth of Maize Kernels   总被引:8,自引:0,他引:8  
The growth of maize (Zea mays L.) kernels depends on the availabilityof carbon (C) and nitrogen (N) assimilates supplied by the motherplant and the capacity of the kernel to use them. Our objectiveswere to study the effects of N and sucrose supply levels ongrowth and metabolism of maize kernels. Kernel explants of Pioneer34RO6 were culturedin vitro with varying combinations of N (5to 30 m M) and sucrose (117 to 467 m M). Maximum kernel growthwas obtained with 10 m M N and 292 m M sucrose in the medium,and a deficiency of one assimilate could not be overcome bya sufficiency of the other. Increasing the N supply led to increasesin the kernel sink capacity (number of cells and starch granulesin the endosperm), activity of certain enzymes (soluble andbound invertases, sucrose synthase, and aspartate aminotransaminase),starch, and the levels of N compounds (total-N, soluble protein,and free amino acids), and decreased the levels of C metabolites(sucrose and reducing sugars). Conversely, increasing the sucrosesupply increased the level of endosperm C metabolites, freeamino acids, and ADPG-PPase and alanine transaminase activities,but decreased the activity of soluble invertase and concentrationsof soluble protein and total-N. Thus, while C and N are interdependentand essential for accumulation of maximum kernel weight, theyappear to regulate growth by different means. Nitrogen supplyaids the establishment of kernel sink capacity, and promotesactivity of enzymes relating to sucrose and nitrogen uptake,while sucrose regulates the activities of invertase and ADPG-PPase.Copyright 1999 Annals of Botany Company Zea mays, maize,, invertase, ADPG-PPase, media composition, sucrose, nitrogen, C/N.  相似文献   

10.
Chromatography of maize kernel extracts on DEAE-cellulose resolves two fractions of starch synthase activity, one of which (starch synthase 1) is capable of synthesizing α-glucan in the absence of exogenous primer and the presence of 0.5 m citrate (J. L. Ozbun, J. S. Hawker, and J. Preiss, Plant Physiol. (1971) 48, 765–769). This starch synthase has been purified 200-fold from developing kernels of normal maize, and shown to have no detectable activities of branching enzyme, amylase, pullulanase, phosphorylase, and D enzyme. The preparation, however, was not electrophoretically homogeneous. This preparation had a Km value of 0.033 mm for ADPglucose in the presence of 0.5 m citrate. The reaction in the presence of citrate was stimulated 10-fold by the addition of excess purified branching enzyme. This stimulation is higher than those reported previously (C. D. Boyer and J. Preiss, Plant Physiol. (1979) 64, 1039–1042) but is consistent with the predicted effects of removal of amylase activity. The effects of salts other than citrate on activity in the absence of exogenous primer were small, but the stimulation could be restored by the addition of excess purified branching enzyme. Citrate increased the affinity of the enzyme for the endogenous primer present to such a level that no effect of exogenous primer on reaction rate could be observed in the presence of 0.5 m citrate. Analysis of the glucan/iodine complex and the enzymatic breakdown products patterns from the products of the starch synthase reaction indicates a high degree of linearity. The results obtained are discussed in relation to the biosynthesis of starch in vivo.  相似文献   

11.
In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.  相似文献   

12.
ADPglucose: α-1,4-glucan α-4-glucosyltransferases (starch synthetases) from leaves of Vitis vinifera and leaves and kernels of Zea mays were chromatographed on DEAE-cellulose columns. One form of the enzyme was present in grape leaves having activity both in the presence and absence of primer. Two forms were present in both leaves and kernels of maize. The second peak of activity in maize leaves and the first peak in maize kernels synthesized a polyglucan in the absence of primer. A peak of branching enzyme (Q-enzyme) occurred between the two starch synthetase peaks with both tissues. When fractions containing starch synthetase and branching enzyme were added to the first leaf starch synthetase peak, up to 100-fold activation of the unprimed reaction occurred. Branching enzyme did not stimulate the unprimed activity of the first kernel peak and no branching enzyme could be detected in this peak. The unprimed product was a branched polyglucan with mainly α-1,4-links.  相似文献   

13.
14.
Sucrose synthase is usually localized by immunocytochemistry, but this method does not show the actual activity of the localized enzyme. A histochemical assay is presented here showing the activity of sucrose synthase by tetrazolium salt precipitation on sections of developing maize kernels. The advantages of the assay are a high sensitivity for low amounts of active sucrose synthase and the independence of specific antibodies.In this study the activity of endosperm sucrose synthase is shown to move gradually from the apical part of the endosperm to the basal endosperm during kernel development. This shift in sucrose synthase activity correlates well with the localization of starch synthesis during kernel development. The assay also shows the early loss of activity in the aleurone layer bordering the embryo, and a loss of activity in the apical aleurone during the final stage of kernel development while the enzyme was still found by immunocytochemistry. This is in contrast to a high sucrose synthase activity in the epithelium of the scutellum, where hardly any labelling was found with antibodies against maize sucrose synthase. Low sucrose synthase activities were found in the pericarp and pedicel parenchyma.Possible functions of the high and low activity patterns in the developing maize kernels and differences between the enzyme assay and immunocytochemistry are discussed.  相似文献   

15.
Past research on kernel growth in wheat (Triticum aestivum) has shown that the kernel itself largely regulates the influx of sucrose for consequent starch synthesis in the endosperm of the grain. The first step in the conversion of sucrose to starch is catalyzed by sucrose synthase (EC 2.4.13). Sucrose synthase activity was assayed in developing endosperms from kernels differing in growth rate and in maximum dry weight accumulation. From 10 to 22 days after anthesis, sucrose synthase activity per wheat endosperm remained constant with respect to time in all grains. However, kernels which had higher rates of kernel growth and which achieved greatest maximum weight had consistently and significantly higher sucrose synthase activities at any point in time than did kernels with slower rates of dry matter accumulation and lower maximum weight. In addition, larger kernels had a significantly greater amount of water in which this activity could be expressed. Although the results do not implicate sucrose synthase as the “rate limiting” enzyme in wheat kernel growth, they do emphasize the importance of sucrose synthase activity in larger or more rapidly growing kernels, as compared to smaller slower growing kernels.  相似文献   

16.
Tissue distribution and activity of enzymes involved in sucrose and hexose metabolism were examined in kernels of two inbreds of maize (Zea mays L.) at progressive stages of development. Levels of sugars and starch were also quantitated throughout development. Enzyme activities studied were: ATP-linked fructokinase, UTP-linked fructokinase, ATP-linked glucokinase, sucrose synthase, UDP-Glc pyrophosphorylase, UDP-Glc dehydrogenase, PPi-linked phosphofructokinase, ATP-linked phosphofructokinase, NAD-dependent sorbitol dehydrogenase, NADP-dependent 6-P-gluconate dehydrogenase, NADP-dependent Glc-6-P dehydrogenase, aldolase, phosphoglucoisomerase, and phosphoglucomutase. Distribution of invertase activity was examined histochemically. Hexokinase and ATP-linked phosphofructokinase activities were the lowest among these enzymes and it is likely that these enzymes may regulate the utilization of sucrose in developing maize kernels. Most of the hexokinase activity was found in the endosperm, but the embryo had high activity on a dry weight basis. The endosperm, which stores primarily starch, contained high PPi-linked phosphofructokinase and low ATP-linked phosphofructokinase activities, whereas the embryo, which stores primarily lipids, had much higher ATP-linked phosphofructokinase activity than did the endosperm. It is suggested that PPi required by UDP-Glc pyrophosphorylase and PPi-linked phosphofructokinase in the endosperm may be supplied by starch synthesis. Sorbitol dehydrogenase activity was largely restricted to the endosperm, whereas 6-P-gluconate and Glc-6-P dehydrogenase activities were highest in the base and pericarp. A possible metabolic pathway by which sucrose is converted into starch is proposed.  相似文献   

17.
Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.It has long been known that starch granules contain bound polypeptides, with protein levels of isolated starch granules from maize (Zea mays) ranging from 0.3 to 1.0% based upon measurement of N2 (May, 1987). A recent study by our laboratory demonstrates that isolated starch granules from maize contain several dozen strongly bound polypeptides (Mu-Forster et al., 1996). The granule-associated proteins include starch-biosynthetic enzymes such as the waxy protein, SSI, and SBEIIb. These polypeptides are not removed from intact starch granules by protease treatment or detergent washing; therefore, they are believed to bind to the starch and to become irreversibly entrapped within the starch matrix.Based upon staining intensities of polypeptides extracted from the starch granule (Mu-Forster et al., 1996), approximately one-half of the granule-associated proteins in maize consist of low-molecular-mass polypeptides ranging between 10 and 27 kD. These bands fall within the size range displayed by the zein storage proteins, however, the spatial distribution of these polypeptides within the starch granule is unknown. Zeins have been defined as alcohol-soluble proteins that occur principally in protein bodies of maize endosperm and that may or may not require reduction before extraction (Wilson, 1991). The association of zeins with starch granules during endosperm development would not be expected because zein genes do not contain transit peptides that would target these proteins through the amyloplast envelope into the amyloplast stroma.The objective of this study was to establish the topology of granule-associated zeins in starch granules from maize endosperm. To accomplish this, it was necessary to distinguish between surface-localized and internalized polypeptides. Our working hypothesis defines polypeptides localized at the starch granule surface as those that are susceptible to hydrolysis upon treatment of intact granules with exogenous proteases. Conversely, internal granule proteins are defined as those that (a) become susceptible to proteolysis only following thermal disruption of the starch matrix, and (b) resist extraction by 2% SDS at room temperatures (Denyer et al., 1993; Rahman et al., 1995; Mu-Forster et al., 1996).In this study we were able to distinguish between surface-localized and internalized granule-associated polypeptides in starch granules from maize endosperm by use of the thermophilic protease thermolysin. Thermolysin is well suited for this purpose because it is highly active at starch-gelatinization temperatures, and has also been shown to effectively hydrolyze hydrophobic proteins located at the surfaces of chloroplasts and other subcellular organelles (Cline et al., 1984; Xu and Chitnis, 1995). Upon extended incubation of intact starch granules with thermolysin at subgelatinization temperatures, we found that zeins were selectively removed from the starch granule surface. All other granule-associated polypeptides remained inaccessible to proteolytic attack or to extraction by 2% SDS, unless the starch matrix was first disrupted by gelatinization. Our results distinguish between the surface-localized and granule-intrinsic proteins of maize endosperm, and establish that zeins are localized at the starch-granule surface. In addition, cross-linking experiments were conducted to determine nearest-neighbor relationships among zein subunits localized at the granule surface and granule intrinsic polypeptides localized within the starch matrix.  相似文献   

18.
Rijven AH 《Plant physiology》1984,75(2):323-328
A procedure using polyethylene glycol (PEG), molecular weight 1000, was developed for the isolation of starch granules from wheat endosperm. Immature endosperm tissue was cut repeatedly in 300 millimolar PEG 1000 and filtered through Miracloth. Centrifugation separated a pellet from a supernatant with inhibitory activity. The pellet contained several enzyme activities, including soluble and bound components of starch synthase, starch phosphorylase, and sucrose synthase activities. The starch phosphorylase activity was unaffected by several washings with 300 millimolar PEG 1000 but was lost when the granules were washed once without PEG or washed with sucrose, glycerol, or sorbitol (up to 30%, w/v). The fraction of starch synthase, remaining on the granules after a wash without PEG (the `bound' activity) was not affected by the addition of 30% sorbitol to the wash buffer. This fraction became larger with grain development (0.2-0.7).

To obtain high activity, PEG was required not only during isolation of granules but also in the assay of both starch phosphorylase and starch synthase giving optimum activity at 225 to 255 millimolar. PEG reduced the requirement for glycogen as primer with soluble starch synthase. However, the `bound' starch synthase activity was unaffected by PEG. PEG of different size were compared by their effects in the assay of starch granules: with increase in molecular size, the same effect was obtained at ever lower polymer concentration (w/v) down to a limit.

Treatment of granules with Triton X-100 did not affect their starch synthase activity, but it removed the capacity to incorporate label from UDP [14C]G into non-starch polymers.

It is concluded that PEG, like some other active compounds (ethanol Na3-citrate, and Ficoll) could mediate enzyme-primer interaction by exclusion.

  相似文献   

19.
Time course of starch production and the key enzyme activities in the grains of four maize inbred lines (two high-starch and two low-starch lines) were studied. Accumulation of grain starch and its components in four maize inbred lines rose continuously after pollination and increased as a sigmoid curve during grain filling. The accumulation rates showed single-peak curves. The accumulation rates of starch and its components reached their peaks on 25–32 days after pollination (DAP), respectively. Activities of adenosine diphosphoglucose pyrophosphorylase (AGPPase) and starch synthase in the grains of four lines followed single-peak curves with the peaks on 24–31 DAP. The highest activity of the starch-branching enzyme (Q-enzyme) in the grains of both high-starch lines appeared on 23 DAP, but that of both low-starch inbred lines showed double-peak curves, the peaks being at 15–20 DAP and 30–35 DAP. There was significant positive correlation between AGPPase, soluble starch synthase (SSS), and starch granule-bound synthase (GBSS) activities. The results indicated the Q-enzyme had different expression patterns in the high-and the low-starch maize inbred lines, and that AGPPase, SSS, and GBSS activities were significantly and positively correlated with amylose, amylopectin, and starch accumulation rates in all lines. This text was submitted by the authors in English  相似文献   

20.
We previously showed that the selective accumulation of phosphoenolpyruvate carboxylase (PEPC) in photosynthetically maturing maize (Zea mays L.) leaf cells induced by nitrate supply to nitrogen-starved plants was primarily a consequence of the level of its mRNA (B Sugiharto, K Miyata, H Nakamoto, H Sasakawa, T Sugiyama [1990] Plant Physiol 92: 963-969). To determine the specificity of inorganic nitrogen sources for the regulation of PEPC gene expression, nitrate (16 millimolar) or ammonium (6 millimolar) was supplied to plants grown previously in low nitrate (0.8 millimolar), and changes in the level of PEPC and its mRNA were measured in the basal region of the youngest, fully developed leaves of plants during recovery from nitrogen stress. The exogenous supply of nitrogen selectively increased the levels of protein and mRNA for PEPC. This increase was more pronounced in plants supplemented with ammonium than with nitrate. The accumulation of PEPC during nitrogen recovery increased in parallel with the increase in the activity of glutamine synthetase and/or ferredoxin-dependent glutamate synthase. Among the major amino acids, glutamine was the most influenced during recovery, and its level increased in parallel with the steady-state level of PEPC mRNA for 7 hours after nitrogen supply. The administration of glutamine (12 millimolar) to nitrogen-starved plants increased the steady-state level of PEPC mRNA 7 hours after administration, whereas 12 millimolar glutamate decreased the level of PEPC mRNA. The results indicate that glutamine and/or its metabolite(s) can be a positive control on the nitrogen-dependent regulation of PEPC gene expression in maize leaf cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号