首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.  相似文献   

2.
The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.  相似文献   

3.
Representative microbial cultures from an oil reservoir and electrochemical techniques including potentiodynamic scan and linear polarization were used to investigate the time dependent corrosion rate associated with control of biogenic sulphide production through addition of nitrite, nitrate and a combination of nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB) and nitrate. The addition of nitrate alone did not prevent the biogenic production of sulphide but the produced sulphide was eventually oxidized and removed from the system. The addition of nitrate and NR-SOB had a similar effect on oxidation and removal of sulphide present in the system. However, as the addition of nitrate and NR-SOB was performed towards the end of sulphide production phase, the assessment of immediate impact was not possible. The addition of nitrite inhibited the biogenic production of sulphide immediately and led to removal of sulphide through nitrite mediated chemical oxidation of sulphide. The real time corrosion rate measurement revealed that in all three cases an acceleration in the corrosion rate occurred during the oxidation and removal of sulphide. Amendments of nitrate and NR-SOB or nitrate alone both gave rise to localized corrosion in the form of pits, with the maximum observed corrosion rates of 0.72 and 1.4 mm year−1, respectively. The addition of nitrite also accelerated the corrosion rate but the maximum corrosion rate observed following nitrite addition was 0.3 mm year−1. Furthermore, in the presence of nitrite the extent of pitting was not as high as those observed with other control methods.  相似文献   

4.
This study employed simulated spills of weathered diesel fuel and measured the initial effects on the intertidal sand flat microphytobenthic (MPB) communities. The goals were to examine the impacts of short-term (hours) and longer-term (days) exposure to petroleum on the native sand flat MPB in coastal North Carolina and to assess recovery of the community following the exposure. We assessed changes in biomass (chlorophyll a), primary productivity (14C bicarbonate incorporation), photophysiology (P vs. I curves) and species composition (microscopy) and compared diesel exposed samples to unamended controls. We found that short-term impacts of diesel fuel pollution were confined to primary productivity and photophysiology of sand flat MPB. Short-term effects were only detected at relatively high concentrations that are not common outside of a major spill event. In the longer term, diesel fuel was again found to have effects on primary productivity, but at higher concentrations than would be likely to occur in industrialized coastal areas. However, negative impacts on photophysiology were detected at diesel fuel concentrations slightly above typical ambient conditions in coastal waters in industrialized areas. Biomass as measured by chlorophyll a was not affected by any concentration in the longer-term exposure to diesel fuel. Cell counts in the longer-term experiments found cyanobacteria had larger negative impacts from diesel fuel exposure than did diatoms. The recovery portion of this study showed the sand flat MPB communities were fairly resilient following both additions of diesel fuel. However, photophysiology and cell counts did not return to conditions equivalent to the control. Data from this study indicate that the effects of petroleum pollution on the MPB community of tidal sand flats should be considered alongside effects on other coastal microalgae in ecological and damage assessments.  相似文献   

5.
Diesel fuel pollution in coastal waters, resulting from recreational boating and commercial shipping operations, is common and can adversely affect marine biota. The purpose of this study was to examine the effect of additions of particulate organic carbon (POC) in the form of naturally-occurring marsh grass (Spartina alterniflora), inorganic nutrients (nitrogen and phosphorus), inert particles, and dissolved organic carbon (DOC) on diesel fuel biodegradation and to attempt to formulate an effective bioremedial treatment for small diesel fuel spills in marine waters. Various combinations of treatments were added to water samples from a coastal marina to stimulate diesel fuel biodegradation. Diesel fuel was added in concentrations approximating those found in a spill and biodegradation of straight chain aliphatic constituents was estimated by measuring mineralization of 14C hexadecane added to diesel fuel. All treatments that included POC showed stimulation of biodegradation. However, the addition of inert particles (glass fiber filters and nylon screening) caused no stimulation of biodegradation. The addition of nitrogen and phosphorus alone did not result in stimulation of biodegradation, but nitrogen and Spartina (although not phosphorus and Spartina) did result in stimulation above that of Spartina alone. Maximum biodegradation rates were obtained by the addition of the Spartina POC, ammonium, and phosphate. The addition of mannitol, a labile DOC source with POC and phosphate resulted in a decrease in diesel fuel biodegradation as compared to POC and phosphate alone. The seasonal pattern of diesel fuel biodegradation showed a maximum in the summer and a minimum in the winter. Therefore, of the treatments tested, the most effective for bioremediation of diesel fuel in marine waters is the addition of POC, nitrogen, and phosphorus.  相似文献   

6.
Diesel fuel pollution in coastal waters, resulting from recreational boating and commercial shipping operations, is common and can adversely affect marine biota. The purpose of this study was to examine the effect of additions of particulate organic carbon (POC) in the form of naturally-occurring marsh grass (Spartina alterniflora), inorganic nutrients (nitrogen and phosphorus), inert particles, and dissolved organic carbon (DOC) on diesel fuel biodegradation and to attempt to formulate an effective bioremedial treatment for small diesel fuel spills in marine waters. Various combinations of treatments were added to water samples from a coastal marina to stimulate diesel fuel biodegradation. Diesel fuel was added in concentrations approximating those found in a spill and biodegradation of straight chain aliphatic constituents was estimated by measuring mineralization of 14C hexadecane added to diesel fuel. All treatments that included POC showed stimulation of biodegradation. However, the addition of inert particles (glass fiber filters and nylon screening) caused no stimulation of biodegradation. The addition of nitrogen and phosphorus alone did not result in stimulation of biodegradation, but nitrogen and Spartina (although not phosphorus and Spartina) did result in stimulation above that of Spartina alone. Maximum biodegradation rates were obtained by the addition of the Spartina POC, ammonium, and phosphate. The addition of mannitol, a labile DOC source with POC and phosphate resulted in a decrease in diesel fuel biodegradation as compared to POC and phosphate alone. The seasonal pattern of diesel fuel biodegradation showed a maximum in the summer and a minimum in the winter. Therefore, of the treatments tested, the most effective for bioremediation of diesel fuel in marine waters is the addition of POC, nitrogen, and phosphorus.  相似文献   

7.
Microbial communities from three Argentinean saline soils were extracted and tested for their ability to degrade diesel fuel in liquid culture at salinities between 0% and 25%. In each case, the degradation process was continuously monitored by measuring oxygen consumption. Two communities (CR1 and CR2) showed nearly equal degrees of degradation across a salinity range of 0%-10% (the former degrading about 63% of the diesel fuel and the latter about 70% after 53 and 80 d, respectively). Furthermore, the degree of degradation was not significantly lower in the presence of 17.5% salt (58% and 65% degraded, respectively). A third community (El Zorro) showed a maximum turnover at 5% salt (79% diesel fuel degraded) and significant degradation (66%) at a salinity of 10%. However, the degree of degradation by this community clearly dropped at 0% and 15% salt. None of the communities were able to degrade diesel fuel in the presence of 25% salt, but the living cell counts showed that components of the microbial population survived the long-term exposure. The surviving portion is obviously sufficient to allow substantial restoration of the original community, as verified by the BIOLOG method. Isolates of the CR1 community were identified as members of the genera Cellulomonas, Bacillus, Dietzia, and Halomonas. In light of our investigations, the bioremediation of contaminated saline soils should be quite possible if the salinity of the soil water is lower than 15% or if it is reduced below this limit by the addition of water.  相似文献   

8.
As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.  相似文献   

9.
Fusarium Growth Supported by Hydrocarbons   总被引:2,自引:1,他引:1       下载免费PDF全文
In studies of the microflora associated with fuel storage tanks, a Fusarium species was isolated from No. 1 diesel fuel. The culture was identified as F. moniliforme Sheldon. Attempts were made to cultivate this organism with seven hydrocarbons of 99+ mole per cent purity as the sole carbon source; growth of the fungal culture was supported only by n-decane and n-dodecane. A spore viability study of F. moniliforme in filter-sterilized diesel fuel with no free water showed that viability was retained for 9 months in this environment.  相似文献   

10.
In order to achieve a viable biodiesel industry, new catalyst technology is needed which can process a variety of less expensive waste oils, such as yellow grease and brown grease. However, for these catalysts to be effective for biodiesel production using these feedstocks, they must be able to tolerate higher concentrations of free fatty acids (FFA), water, and sulfur. We have developed a class of zirconia supported metaloxide catalysts that achieve high FAME yields through esterification of FFAs while simultaneously performing desulfurization and de-metallization functions. In fact, methanolysis, with the zirconia supported catalysts, was more effective for desulfurization than an acid washing process. In addition, using zirconia supported catalysts to convert waste grease, high in sulfur content, resulted in a FAME product that could meet the in-use ASTM diesel fuel sulfur specification (<500 ppm). Possible mechanisms of desulfurization and de-metallization by methanolysis were proposed to explain this activity.  相似文献   

11.
In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine.  相似文献   

12.
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6 h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182 °C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.  相似文献   

13.
Soil cleanup guidelines were developed for diesel fuel No. 2 that are protective of human health. Guidelines were conservatively based on a residential land use scenario. This scenario estimates human health risks associated with long‐term exposure to site soil via the inhalation, dermal, and ingestion routes of exposure. Lifetime dermal cancer studies were selected as the basis for deriving a safe level of diesel fuel in soil. Soil cleanup guidelines for diesel fuel No. 2 ranged from 1166 to 11,287 mg/kg for adult or child residents and represent contaminant levels that pose acceptable health risks for both present and proposed future uses of a site.  相似文献   

14.
Microbiological studies of a spent nuclear fuel pool in Argentina were performed to evaluate the risk of microbiological induced corrosion and determine the cultivable bacterial population. Based on standard methods and sequencing of the 16sRNA gene, eighteen microorganisms were identified. Bacillus cereus RE 10 was the predominant organism isolated, and was selected to investigate the biofilm formation process and the corrosion effect on aluminum alloy AA 6061 and on pure aluminum (Al 99.999%). To simulate the environmental conditions, the experiments were performed using a highly diluted medium. After 20 days of exposure, major pits covered with deposits were found on AA 6061 samples exposed to B. cereus RE 10 but not on Al 99.999%. There was a close correlation between biofilm patches, corrosion deposits, pitting and Al-(Fe or Ti)-Si inclusions. We postulate that this correlation is a consequence of a light local alkalinization around the inclusions that produces changes in the expression pattern of B. cereus RE 10 and allows bacterial survival using other substrates. Under these conditions, the generated biofilm induces a crevice corrosion effect around the intermetallic inclusions of the alloy. Our results will be useful for further studies related to the microbial impact on nuclear safety in nuclear waste storage facilities in Argentina.  相似文献   

15.
Fatty acid methyl ester (FAME) profiles obtained directly in situ have been used to estimate microbial community structure in different technogenous wastes. The effect of nutrients added, simulating the effect of plant-derived exudates on the indigenous microflora in the heaps during the reclamation process, was also studied in microcosms. The wastes such as coal-mine spoil, non-ferrous metallurgical slag and coal fly-ash were characterised by a poorly developed microflora as compared to a typical sandy loam soil. However, the most similar to the soil was the community structure in the coalmine spoil. The high content of 18: 2omega6,9 found in the metallurgical slag indicated the domination of fungi in this waste. In contrast, representatives of the Cytophaga-Flavobacterium group dominated the coal fly-ash, for which 16:1omega5c was used as the marker acid. The waste amendment resulted in changes of FAME profiles obtained. However, the changes were site-specific, indicating response of particular microbial groups to the added nutrients.  相似文献   

16.
Eleven lipase-producing thermophilic bacteria strains were recently isolated from Kuala Woh Hot Spring, in Peninsular Malaysia. These strains have been qualitatively screened using Rhodamine B-olive oil plate agar. All strains showed lipase activity in the range of 0.56–2.62 U/ml. Their thermostabilities were then determined by incubation at 80°C for 30 min. Results showed that strain KW 6 and KW 12 produced relatively thermostable lipases, which retained 62 and 54% of their original activity, respectively. They were identified based on their morphological characteristics, biochemical tests and the Biolog system. Strain KW 12 showed exceptionally unique characteristics (over KW 6) being able to grow in a broad range of pH and temperature. It was further identified using 16S rRNA partial sequence analysis and the result of 16S rRNA partial sequence analysis identified KW 12 as Anoxybacillus kamchatkensis.  相似文献   

17.
Das P  Lei W  Aziz SS  Obbard JP 《Bioresource technology》2011,102(4):3883-3887
Biomass productivity and fatty acid methyl esters (FAME) derived from intracellular lipid of a Nannochloropsis sp. isolated from Singapore’s coastal waters were studied under different light wavelengths and intensities. Nannochloropsis sp., was grown in both phototrophic and mixotrophic (glycerol as the carbon source) culture conditions in three primary monochromatic light wavelengths, i.e., red, green and blue LEDs, and also in white LED. The maximum specific growth rate (μ) for LEDs was blue > white > green > red. Nannochloropsis sp. achieved a μ of 0.64 and 0.66 d−1 in phototrophic and mixotrophic cultures under blue lighting, respectively. The intracellular fatty acid composition of Nannochloropsis sp. varied between cultures exposed to different wavelengths, although the absolute fatty acid content did differ significantly. Maximum FAME yield from Nannochloropsis sp. was 20.45% and 15.11% of dry biomass weight equivalent under photo- and mixotrophic culture conditions respectively for cultures exposed to green LED (550 nm). However, maximum volumetric FAME yield was achieved for phototrophic and mixotrophic cultures (i.e., 55.13 and 111.96 mg/l, respectively) upon cell exposure to blue LED (470 nm) due to highest biomass productivity. It was calculated that incremental exposure of light intensity over the cell growth cycle saves almost 20% of the energy input relative to continuous illumination for a given light intensity.  相似文献   

18.
Fast development of ionic liquids as gaining more and more attention valuable chemicals will undoubtedly lead to environmental pollution. New formulations and application of ionic liquids may result in contamination in the presence of hydrophobic compounds, such as petroleum mixtures. We hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C3 to C18) on biodegradation of diesel fuel by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C8–C18) caused a decrease in diesel fuel biodegradation. As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C3 and C18 homologues, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel.  相似文献   

19.
The distribution of petroleum hydrocarbons and their effects on the periphytic algal biomass using in situ microcosms were investigated in Ponggol estuary located on the northeastern coast of Singapore. Dissolved or dispersed petroleum hydrocarbon (DDPH) concentrations in the surface and bottom waters and absorbed or adsorbed petroleum hydrocarbon (AAPH) concentrations in sediments were monitored from July 1999 to June 2000. Results showed concentrations ranging from 4.42 to 248.94 μg l−1, from 0.35 to 1099.65 μg l−1, and from 20.55 to 541.01 mg kg−1 for DDPH in surface and bottom waters and AAPH in sediments, respectively. Accidental spillages of fuel from dredgers operating in the estuary, fuel and engine oil from recreational boats, shipping operations in the adjacent strait, and runoff monsoon drains in the vicinity were some of the possible sources of petroleum hydrocarbons in the estuary. An assessment of environmentally realistic concentrations of petroleum hydrocarbons on periphytic algal biomass using in situ microcosms revealed signs of acute toxicity. A reduction in periphytic algal biomass (with respect to controls) of 68-93% was observed for various treatments exposed to diesel.  相似文献   

20.
The effects of petroleum hydrocarbons on the microbial community associated with decomposing Carex leaf litter colonized in Toolik Lake, Alaska, were examined. Microbial metabolic activity, measured as the rate of acetate incorporation into lipid, did not vary significantly from controls over a 12-h period after exposure of colonized Carex litter to 3.0 ml of Prudhoe Bay crude oil, diesel fuel, or toluene per liter. ATP levels of the microbiota became elevated within 2 h after the exposure of the litter to diesel fuel or toluene, but returned to control levels within 4 to 8 h. ATP levels of samples exposed to Prudhoe Bay crude oil did not vary from control levels. Mineralization of specifically labeled 14C-[lignin]-lignocellulose and 14C-[cellulose]-lignocellulose by Toolik Lake sediments, after the addition of 2% (vol/vol) Prudhoe Bay crude oil, motor oil, diesel fuel, gasoline, n-hexane, or toluene, was examined after 21 days of incubation at 10°C. Diesel fuel, motor oil, gasoline, and toluene inhibited 14C-[lignin]-lignocellulose mineralization by 58, 67, 67, and 86%, respectively. Hexane-treated samples displayed an increase in the rate of 14C-[lignin]-lignocellulose mineralization of 33%. 14C-[cellulose]-lignocellulose mineralization was inhibited by the addition of motor oil or toluene by 27 and 64%, respectively, whereas diesel fuel-treated samples showed a 17% increase in mineralization rate. Mineralization of the labeled lignin component of lignocellulose appeared to be more sensitive to hydrocarbon perturbations than was the labeled cellulose component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号