首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To identify Fusarium species associated with diseases of root and basal plate of onion, surveys were conducted in seven provinces of Turkey in 2007. Samplings were performed in 223 fields, and 332 isolates belonging to 7 Fusarium spp. were obtained. The isolates were identified as Foxysporum, Fsolani, Facuminatum, Fequiseti, Fproliferatum, Fredolens, and Fculmorum based on morphological and cultural characteristics. Also, species‐specific primers were used to confirm the identity of Fusarium species. Foxysporum was the most commonly isolated species, comprising 66.57% of the total Fusarium species. Fredolens was identified for the first time in onion‐growing areas of Turkey. Selected isolates of each species were evaluated for their aggressiveness on onion plant. Foxysporum, Fsolani, Facuminatum, Fproliferatum, and Fredolens were highly pathogenic, causing severe damping‐off on onion plants cv. Texas Early Grano. Inter‐simple sequence repeats (ISSR) markers revealed a high degree of intra‐ and interspecific polymorphisms among Fusarium spp.  相似文献   

2.
Three recent cases of hyalohyphomycosis caused by Fusarium sp. illustrate differing aspects of infections produced by these organisms. One patient was undergoing continuous ambulatory peritoneal dialysis when peritonitis developed caused by Fusarium moniliforme. Removal of the catheter and amphotericin B were used in successful management. In a neutropenic patient on therapy for leukemia, multiple persistent infections occurred including JK diptheroids, and Candida albicans sepsis. Finally, numerous florid skin lesions caused by Fusarium oxysporum developed even while the patient was receiving amphotericin B and he died. In a second neutropenic patient on treatment for leukemia, sinus and cutaneous lesions developed due to Fusarium. These resolved on amphotericin B therapy following the return of circulating neutrophils. The literature on Fusarium infections and aspects of the biology of the organism are reviewed.  相似文献   

3.
The bayoud disease, vascular fusariosis of date palm tree (Phoenix dactylifera L.), is caused by the pathogenic fungus Fusarium oxysporum f. sp. albedinis. The characteristic symptoms of the bayoud disease were elicited on detached leaves of F. oxysporum f. sp. albedinis‐susceptible cultivars of date palm trees, which were treated either with the FII (F. oxysporum f. sp. albedinis) fraction purified from the organic extracts of a F. oxysporum f. sp. albedinis liquid culture, or with a solution of fusaric acid. Enniatins, which are secreted by several Fusarium species, were tested at different concentrations and were not capable of inducing symptoms on such detached leaves. The FII (F. oxysporum f. sp. albedinis) fraction was unable to induce necrosis of potato slices, which indicates that it does not contain significant amounts of enniatins. The high‐performance liquid chromatography (HPLC) profiles of the FII (F. oxysporum f. sp. albedinis) fraction showed toxic peaks different from fusaric acid. A fraction, named FII (AZ4), was obtained from culture filtrates of a saprophytic Fusarium strain maintained in the same cultural conditions as for the F. oxysporum f. sp. albedinis. The HPLC profile of the FII (AZ4) fraction did not show the characteristic phytotoxic peaks present in the FII (F. oxysporum f. sp. albedinis) fraction. This finding well agrees with the fact that the FII (AZ4) fraction is not toxic to detached date palm leaves. Moreover, the HPLC profiles of FII fractions obtained from other special forms of F. oxysporum are different the FII (F. oxysporum f. sp. albedinis) profile. The phytotoxic compounds purified from the FII (F. oxysporum f. sp. albedinis) fraction are probably new molecules that may help in understanding the pathogenesis of bayoud disease.  相似文献   

4.
Fusarium vascular wilt (caused by Fusarium oxysporum f. sp. passiflorae) is a limiting factor in the cultivation of yellow passion fruit (Passiflora edulis). Since there is no effective and economically viable control available, development of resistant or at least tolerant cultivars are in demand. A number of procedures have been used for the initial selection of plant genotypes resistant to various fungal pathogens by means of a fungal culture filtrate or purified toxin. In this study, seeds and in vitro-grown plantlets of passion fruit were screened with different concentrations of either Fusarium oxysporum f. sp. passiflorae (FOP) culture filtrate (0, 20, 30, 40 or 50%, v/v) or fusaric acid (0.10, 0.20, 0.30 or 0.40 mM) supplemented in Murashige and Skoog (MS) basal media. Subsequently, selected plants were inoculated with a conidial suspension of FOP to assess correlation between in vivo and in vitro responses. In vitro sensitivity to the selective agents and the resistance response to the pathogen were also compared. Root growth was markedly influenced by FA, culture filtrate, and conidial suspension culture treatments. Observations indicated that roots were primary targets for attack by F. oxysporum. Successful in vitro selection of resistant genotypes by both FA and culture filtrate treatments suggested that this strategy was viable for accelerating breeding of passion fruit for resistance to the Fusarium vascular wilt.  相似文献   

5.
Fusarium wilt is caused by the soil-inhabiting fungus Fusarium oxysporum ff. spp. and is one of the most devastating plant diseases, resulting in losses and decreasing the quality and safety of agricultural crops. We recently reported the structures and biochemical properties of two biotin-binding proteins, streptavidin C1 and C2 (isolated from Streptomyces cinnamonensis strain KPP02129). In the present study, the potential of the biotin-binding proteins as antifungal agent for Fusarium wilt pathogens was investigated using recombinant streptavidin C1 and C2. The minimum inhibitory concentration of streptavidin C2 was found to be 16 µg ml–1 for inhibiting the mycelial growth of F. oxysporum f.sp. cucumerinum and F. oxysporum f.sp. lycopersici, while that of streptavidin C1 was found to be 64 µg ml–1. Compared with the nontreated control soil, the population density of F. oxysporum f.sp. lycopersici in the soil was reduced to 49·5% and 39·6% on treatment with streptavidin C1 (500 µg ml–1) and C2 (500 µg ml–1), respectively. A greenhouse experiment revealed that Fusarium wilt of tomato plants was completely inhibited on soil drenching using a 50-ml culture filtrate of the streptavidin-producing strain KPP02129.  相似文献   

6.
7.
Trichoderma viride (Pers.) pre-inoculated wheat seedlings infected with Fusarium oxysporum Schlecht. (co-stressed) did not show wilting symptoms compared to Fusarium infected seedlings. Antagonistic activity of T. viride could be demonstrated against Fusarium infection by dual culture experiment. After seven days post infection, morphological and physiological parameters such as, root and shoot length, fresh and dry weight, relative water content, total soluble protein, total chlorophyll and carotenoid contents were observed to be increased in co-stressed compared to Fusarium infected seedlings. Accumulation of hydrogen peroxide was enhanced in Fusarium infected tissues compared to co-stressed. Trichoderma mediated activation of antioxidant enzymes such as, catalase, guaiacol peroxidase, ascorbate peroxidase, superoxide dismutase in co-stressed seedlings indicated their involvement in enhanced resistance against Fusarium infection, which is suggestive of playing crucial role in mitigating cellular toxicity developed due to excess H2O2. Thus, Trichoderma pre-inoculation protected wheat against Fusarium infection by stabilising oxidative stress.  相似文献   

8.
Wilt is a serious disease of guava crop in India. Fusarium oxysporum f. sp. psidii and F. solani have been reported as the main causative agents of this disease. Most recently a survey on guava plants affected with wilt disease was conducted in severely affected areas of India, and two new species of Fusarium viz. Fusarium proliferatum and Fusarium chlamydosporum were found to be associated with this disease. However, pathogenecity of Fusarium chlamydosporum was successfully conducted in the field trials. The culture of F. chlamydosporum was processed for DNA sequencing and DNA sequence was submitted to NCBI with GenBank accession no. HM102506. The submitted DNA sequence of F. chlamydosporum was compared for the genetic position in Fusarium spp. evolutionary phylogenic tree.  相似文献   

9.
10.
In greenhouse experiments, the ectomycorrhizal fungus Laccaria laccata was evaluated for biological control of preemergence, post-emergence and late damping-off of Pinus pinea caused by Fusarium verticillioides and F. oxysporum. In pre-emergence damping-off assays, preinoculation with Laccaria laccata did not significantly improve germination of seeds and no statistical significant differences were found in Fusarium treatments when compared with controls. At 18 weeks after sowing, inoculation with L. laccata reduced the incidence of post-emergence damping-off but differences were significant only in F. oxysporum treatments. Pinus pinea transplanted plants were used in late damping off assays, and only F. oxysporum produced significant damage. Inoculation with L. laccata did not attenuate significantly the virulence of F. oxysporum. However, the percentage of mycorrhization did not reached significant level, so the amount of mycorrhizal fungus was insufficient for effective protection. Although very low percentages of mycorrhization were recorded in all mycorrhized treatments, and Fusarium occurrence significantly reduced mycorrhization, those levels have been efficient to reduce damage in F. oxysporum post-emergence damping-off assays. In short, pre-emergence damping-off was not found; only F. oxysporum produced significant damage on P. pinea seedlings and L. laccata reduced damage when the percentage of mycorrhization reached a significant level. These results have been compared with previous work on P. sylvestris inoculated with the same mycorrhizae isolate and Fusarium pathogens.  相似文献   

11.
In the region of Murcia (southeast Spain), sweet pepper has been grown as a monoculture in greenhouses for many years. Until 2005, when it was banned, soils were disinfested with methyl bromide (MB) to control pathogens and to prevent soil fatigue effects. The genus Fusarium plays an important role in the microbiological component associated with yield decline in pepper monocultures. In the present study, soils were treated with manure amendments, alone (biofumigation, B) or in combination with solarization (biosolarization, BS), with or without the addition of pepper plant residues. The B and BS treatments were compared with a treatment using MB. The extent of disinfestation was measured from the density of Fusarium spp. isolated from the soil before and after the respective treatments. Three different species were systematically isolated: Fusarium oxysporum, Fusarium solani and Fusarium equiseti. The repeated use of manure amendments with pepper crop residues, without solarization, was unable to decrease the Fusarium spp. density (which increased from 2,047.17 CFU g−1 to 3,157.24 CFU g−1 before and after soil disinfestation, respectively), unlike MB-treated soil (in which the fungi decreased from 481.39 CFU g−1 to 23.98 CFU g−1). However, the effectiveness of the repeated application of BS in diminishing doses (with or without adding plant residues) on Fusarium populations (reductions greater than 72%) was similar to or even greater than the effect of MB.  相似文献   

12.
Fusarium wilt, a disease caused by Fusarium oxysporum f.sp batatas (Fob) is an important disease in sweet potato production. Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways. A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture. According to the biological characteristics, 16S rDNA sequence analysis, and physiological and biochemical analysis, the Bacillus subtilis HAAS01 was named. A pot experiment was conducted for the biological control experiment of strain HAAS01, and the endogenous hormone content, antioxidant enzyme activity, soluble protein content, and related gene expressions of sweet potato plants were detected. The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions. In summary, Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.  相似文献   

13.
Maize is the third most important cereal after wheat and barley in Syria. Maize plants are attacked by several Fusarium species causing mainly stalk and ear rot of maize which poses a major impact worldwide. Identification of Fusarium species is important for disease control and for assessment of exposure risk to mycotoxines. To identify Fusarium species attacking maize in Syria, a total of 32 Fusarium isolates were recovered from maize ears collected from four different geographical regions, mainly from Ghouta surrounding Damascus. Fusarium isolates were identified based on morphology and on partial DNA sequencing of the TEF1‐α and rDNA/ITS genes. The majority (26 of 32) of these isolates was identified as F. verticillioides (subdivided into four groups), whereas three isolates turned out to be Fthapsinum, Fequiseti and Fandiyazi. The remaining three isolates were close to Fandiyazi, although further investigation is needed to confirm whether they represent a yet undescribed species. Furthermore, our results showed that sequencing the TEF1‐α gene is much more informative than sequencing of the rDNA/ITS region for Fusarium identification at the species level. PCR analysis showed that only Fverticillioides isolates were potentially fumonisin producers and that only the Fequiseti isolate was potentially trichotecene producer. This is the first report on Fusarium thapsinum, Fequiseti and Fandiyazi attacking maize in Syria.  相似文献   

14.
Present investigation is based on the isolation of Bacillus subtilis from cotton rhizosphere and their evaluation as biocontrol agent against Fusarium oxysporum. The production of extracellular hydrolytic enzyme was studied for determining the antagonism. 43% of 21 isolates were identified under the B. subtilis group on the basis of biochemical characterization. 38% isolates showed competitive activity against Fusarium oxysporum and exhibit more than 50% mycelial inhibition in dual culture bioassay. The pot assay of cotton by seed treatment and soil amendment technique under green house condition showed the competent activity of the isolates in preventing the wilting of cotton seedlings due to F. oxysporum infection. SVI values of 30 day old seedlings indicated that the soil inoculation with B. subtilis BP-2 and seed treatment with B. subtilis BP-9 significantly promoted the growth of cotton seedlings. RAPD profiling revealed the diversity in the Bacillus subtilis group, ranging from 10 to 32%. The discriminative pattern among the isolates belonging to the same species was validated by 16S rDNA partial sequencing which identified them into four different strains of B. subtilis.  相似文献   

15.
This study was conducted to investigate the effects of Fusarium oxysporum Schlecht. (isolate no. B6) on Heterodera cruciferae Franklin and its pathogenicity on cabbage plants. Fusarium oxysporum (B6) was isolated from cysts extracted from cabbage (Brassica olareacae L.) fields in Samsun (north part of Turkey). Healthy cysts obtained from mass culture in a growing chamber were placed on fungal colonies already formed in Petri dishes. The highest infection rate was observed 10 days after inoculation and reached 72%. Fusarium oxysporum also had the ability to penetrate through cysts wall. The effects of spore suspensions of Fusarium on H. cruciferae in cabbage plants were tested in pot experiments in growth chambers. Cabbages cyst nematode (CCN) eggs were first incubated in a fungal spore suspension (108–109 spores/ml) for 5 min and then introduced into pots containing sterilized soil and 3‐weeks‐old healthy cabbage plants. A positive effect was observed on plant height, fresh weight, fresh root weight, length and leaf area. Nematode numbers in the root system decreased within 2 months after artificial inoculations with Fusarium‐infected cysts. This suggests a negative, antagonistic effect between F. oxysporum and H. cruciferae.  相似文献   

16.
More effective ways of applying biocontrol products should be developed based both on the characteristics of the biocontrol agents and the normal practices of the agricultural producer. A new system was developed to improve the biocontrol efficacy of Fusarium wilt for watermelon production, and this system was tested in pot and field experiments. Biocontrol was achieved by applying a novel bioorganic fertilizer product (BIO) to Fusarium-infested soil. The best biocontrol was obtained by application of a bioorganic fertilizer, BIO, into soil during the nursery phase of watermelon seedling followed by a second application to Fusarium-infested soil when watermelon seedlings were transplanted. In comparison with the controls, the incidence of the disease was reduced by 60–100% in the pot experiment and by 59–73% in the field experiment when the BIO was applied during the nursery stage. After application of BIO during the nursery stage, the number of colony-forming units of Fusarium oxysporum in rhizospheric soil was significantly (P < 0.05) inhibited compared to the controls. An in vitro experiment showed that the antagonist Paenibacillus polymyxa in the BIO could effectively colonize the rhizosphere of watermelon and proliferate along the extending plant roots. This inhibited growth of Fusarium oxysporum in the rhizosphere of watermelon and protected the watermelon roots from attack by the pathogens. The method used for biocontrol Fusarium wilt disease in watermelon should be a useful strategy to improve field efficacy of other biocontrol agents.  相似文献   

17.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

18.
19.
Fusarium species are common soil saprophytes and plant pathogens that have been frequently reported as etiologic agents of opportunistic infections in humans. We report eight cases of onychomycosis caused by Fusarium solani (4) and Fusarium oxysporum (4) in São Paulo, Brazil. These species were isolated from toenails in all cases. The infections were initially considered to be caused by dermatophytes. The clinical appearance of the affected toenails was leukonychia or distal subungual hyperkeratosis with yellowish brown coloration. The eight cases reported here suggest that Fusarium spp. should be taken into consideration in the differential diagnosis of tinea unguium.  相似文献   

20.
Isolation trails from garlic seed cloves of certain cultivars commercially distributed and rotted cloves of stored Baladi cultivar during 2010 and 2011 in different regions of Sohag, Egypt resulted in detection of four fungal genera Aspergillus, Botrytis, Fusarium and Penicillium. Moreover, Fusarium spp. was the most dominant fungi. Koch’ postulates were performed on cloves, seedlings and potted garlic plants. Results showed that isolates of F. oxysporum, F. proliferatum and F. solani were superior to other tested fungi and induced the highest cloves rot (CR). F. oxysporum highly reduced clove germination (CG), produced extensive seedlings damping-off and induced highly disease severity index of rotted roots/cloves followed by F. solani. Unexpectedly, it was found that F. proliferatum is contaminated and colonised seed cloves, extremely reduced CG and following harvesting caused the highest CR of stored bulbs. To our knowledge, this is first notice for occurrence of F. proliferatum causing CR of stored garlic bulbs in Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号