首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study explored the role of the proton motive force in the processes of DNA binding and DNA transport of genetic transformation of Bacillus subtilis 168 strain 8G-5 (trpC2). Transformation was severely inhibited by the ionophores valinomycin, nigericin, and 3,5-di-tert-4-hydroxybenzylidenemalononitrite (SF-6847) and by tetraphenylphosphonium. The ionophores valinomycin and nigericin also severely inhibited binding of transforming DNA to the cell envelope, whereas SF-6847 and carbonylcyanide-p-trifluoromethoxyphenylhydrazone hardly affected binding. The proton motive force, therefore, does not contribute to the process of DNA binding, and valinomycin and nigericin interact directly with the DNA binding sites at the cell envelope. The effects of ionophores, weak acids, and tetraphenylphosphonium on the components of the proton motive force and on the entry of transforming DNA after binding to the cell envelope was investigated. DNA entry, as measured by the amount of DNase I-resistant cell-associated [3H]DNA and by the formation of DNA breakdown products, was severely inhibited under conditions of a small proton motive force and also under conditions of a small delta pH and a high electrical potential. These results suggest that the proton motive force and especially the delta pH component functions as a driving force for DNA uptake in transformation.  相似文献   

2.
The spontaneous development of competence by cultures of Streptococcus pneumoniae in casein hydrolysate medium was strongly dependent on the initial pH of the culture medium. Cells growing in cultures beginning with a wide range of initial pH values (6.8 to 8.0) all developed competence, as measured by [3H]DNA uptake, [3H]DNA degradation and genetic transformation; but the initial pH of the medium affected both the timing of the occurrence of competence and the number of times the culture became competent. In cultures grown in media of lower initial pH, competence occurred only once, at high population densities, while in more alkaline media a succession of competence cycles occurred, beginning at lower cell densities. The critical population density required for the initiation of competence varied tenfold over the pH range studied. Successive competence cycles in an alkaline medium were not equivalent: while the percentage of competent cells in the first competence cycle was high (approximately 80%), that in the second competence cycle was lower (approximately 12%). Correspondingly, competence-specific proteins were less prominent in the labelled-protein pattern of the second competence cycle than in that of the first. These features of the physiology of competence control make it possible to adjust the expression of competence to suit various experimental requirements.  相似文献   

3.
The magnitude of the proton motive force generated during in vitro substrate oxidation by Coxiella burnetii was examined. The intracellular pH of C. burnetii varied from about 5.1 to 6.95 in resting cells over an extracellular pH range of 2 to 7. Similarly, delta psi varied from about 15 mV to -58 mV over approximately the same range of extracellular pH. Both components of the proton motive force increased during substrate oxidation, resulting in an increase in proton motive force from about -92 mV in resting cells to -153 mV in cells metabolizing glutamate at pH 4.2. The respiration-dependent increase in proton motive force was blocked by respiratory inhibitors, but the delta pH was not abolished even by the addition of proton ionophores such as carbonyl cyanide-m-chlorophenyl hydrazone or 2,4-dinitrophenol. Because of this apparently passive component of delta pH maintenance, the largest proton motive force was obtained at an extracellular pH too low to permit respiration. C. burnetii appears, therefore, to behave in many respects like other acidophilic bacteria. Such responses are proposed to contribute to the extreme resistance of C. burnetii to environmental conditions and subsequent activation upon entry into the phagolysosome of eucaryotic cells in which this organism multiplies.  相似文献   

4.
The net synthesis of ATP in dark anaerobic cells of Anacystis nidulans subjected to acid jumps and/or valinomycin pulses was characterized thermodynamically and kinetically. Maximum initial rates of 75 nmol ATP/min per mg dry weight at an applied proton motive force of -350 mV were obtained, the flow-force relationship (rate of ATP synthesis vs applied proton motive force) being linear between -240 and -320 mV irrespective of the source of the proton motive force. The pulse-induced ATP synthesis was inhibited by uncouplers (H+ ionophores) and F0F1-ATPase inhibitors but not by KCN or CO. In order to obtain maximum rates of pulse-induced ATP synthesis both a favorable stationary delta psi (-100 mV at pHo 9, preceding the acid jumps) and a favorable stationary delta pH (+2 units at pHo 4.1, preceding the valinomycin pulse) of the plasma membrane were obligatory, the effects of delta psi and delta pH being strictly additive. Moreover, the pulse-induced ATP synthesis required a minimum total proton motive force of -200 to -250 mV across the plasma membrane; it also required low preexisting phosphorylation potentials corresponding to -400 mV in dark anaerobic, i.e., energy-depleted, cells. The results are discussed in terms of both a reversible H+-ATPase and a respiratory electron transport system occurring in the plasma membrane of intact Anacystis nidulans.  相似文献   

5.
The mechanism by which acidophilic bacteria generate and maintain their cytoplasmic pH close to neutrality was investigated. For this purpose we determined the components of proton motive force in the eubacterium Bacillus acidocaldarius and the archaebacterium Thermoplasma acidophilum. After correction for probe binding, the proton motive force of untreated cells was 190 to 240 mV between external pH 2 and 4. Anoxia diminished total proton motive force and the transmembrane pH difference by 60 to 80 mV. The protonophore 2,4-dinitrophenol abolished the total proton motive force almost completely and diminished the transmembrane pH difference by at least two units. However, even after correction for probe binding, protonophore-treated cells maintained a pH difference of approximately one unit.  相似文献   

6.
Electroporation of plasmid and chromosomal DNAs were tested in Haemophilus influenzae because of an interest in introducing DNA into mutants that are deficient in competence for transformation. The initial experiments were designed to investigate and optimize conditions for electroporation of H. influenzae. Plasmid DNA was introduced into the competence proficient strain Rd and its competence-deficient uptake mutants com-52, com-59, and com-88, and the recombination deficient mutant rec1. Plasmid DNA could also be electroporated into the non-transforming strains Ra, Rc, Re and Rf. Plasmid DNA without sequences that are involved in tight binding (uptake) of DNA by competent cells of H. influenzae Rd was electroporated into both competent and non-competent cells. Competent cells were several orders of magnitude less efficient than non-competent cells for electroporation of plasmid DNAs. Electroporation of H. influenzae chromosomal DNA was not successful. Low levels of integration of chromosomal markers were observed following electroporation and these could be ascribed to transformation. The treatment of cells with DNasel following electroporation separated the effects due to electroporation from those due to transformation. The DNasel treatment did not affect the efficiency of plasmid incorporation, but severely restricted effects due to natural DNA transformation.  相似文献   

7.
Membrane vesicles of Clostridium thermoautotrophicum containing carbon monoxide dehydrogenase generated a proton motive force when exposed to CO. This proton motive force, with a value of -140 mV, consisted of only an electrical potential at pH 7.5 and above and of an electrical potential and pH gradient at a lower pH. The proton motive force drove the uptake of L-alanine by the vesicles to a concentration of 300 times that of the medium.  相似文献   

8.
Actinobacillus actinomycetemcomitans is a member of the family Pasteurellaceae and a major causative agent of periodontitis. While several genera from this family are known to be competent for transformation, A. actinomycetemcomitans has yet to be fully characterized. Here we show that the competence of A. actinomycetemcomitans is remarkably similar to that of Haemophilus influenzae. In addition to having a similar frequency of transformation as H. influenzae, A. actinomycetemcomitans competence could also be induced at least 100-fold by cyclic AMP, suggesting that, as in H. influenzae, at least some competence genes are regulated by catabolite repression. Even more intriguing was the discovery of a putative A. actinomycetemcomitans DNA uptake signal sequence (USS) virtually identical to the USS of H. influenzae. Moreover, we provide evidence that this sequence functions in the same capacity as that from H. influenzae; the sequence appears to be required and sufficient for DNA uptake in a variety of assays. Finally, we have taken advantage of this system to develop a simple, highly efficient competence-based method for generating site-directed mutations in the wild-type fimbriated A. actinomycetemcomitans.  相似文献   

9.
Bacillus alcalophilus strain ATCC 27647 showed usual growth characteristics, when inoculated at pH 10.4. The cells entered the logarithmic phase at pH 10.3, and as growth continued, the pH dropped further to a value of 8.8 in the stationary phase. B. alcalophilus strain DSM 485 showed comparable growth only in the initial phase after the addition to fresh medium. The small initial growth period was succeeded by a long lag phase, where the pH continuously dropped. The cells resumed growth after the pH was about 10.0 and continued to grow accompanied by a further decrease of external pH. The bioenergetic parameters measured in the initial growth phase of the two strains at high pH (10.1-10.3) were nearly the same, i.e. delta pH = +97 to +110 mV, delta psi = -206 to -213 mV and delta microH+ = -109 to -103 mV. The inverted proton gradient of about 1.7-1.9 at high pH decreased, as the external pH dropped during growth. This led to an increase of the proton motive force (delta microH+), although the membrane potential (delta psi) also declined. The ATP/ADP ratio of strain DSM 485 was high (4.5-5.5) at fast growth during the initial and second growth period. The ratio declined to about 1.5 at the end of the lag phase. At the initial growth phase and at the end of the lag phase, the delta microH+ was, however, the same (approximately -106 mV) and considerably lower than in the middle of the second growth period (approximately -140 mV). Fast growth, therefore, correlates with a high ATP/ADP ratio but not necessarily with a high delta microH+. Addition of gramicidin or carbonylcyanide m-chlorophenylhydrazone stopped growth of B. alcalophilus strain DSM 485 at pH 10.3 or 9.5 and gramicidin immediately decreased the internal ATP/ADP ratio from 4.5 to 1.2 at pH 10.3.  相似文献   

10.
The energetics of the anaerobic gram-negative bacterium Zymomonas mobilis, a well-known ethanol-producing organism, is based solely on synthesis of 1 mol of ATP per mol of glucose by the Entner-Doudoroff pathway. When grown in the presence of glucose as a carbon and energy source, Z. mobilis had a cytosolic ATP content of 3.5 to 4 mM. Because of effective pH homeostasis, the components of the proton motive force strongly depended on the external pH. At pH 5.5, i.e., around the optimal pH for growth, the proton motive force was about -135 mV and was composed of a pH gradient of 0.6 pH units (internal pH 6.1) and a membrane potential of about -100 mV. Measurement of these parameters was complicated since ionophores and lipophilic probes were ineffective in this organism. So far, only glucose transport by facilitated diffusion is well characterized for Z. mobilis. We investigated a constitutive secondary glutamate uptake system. Glutamate can be used as a nitrogen source for Z. mobilis. Transport of glutamate at pH 5.5 shows a relatively high Vmax of 40 mumol.min-1.g (dry mass) of cells-1 and a low affinity (Km = 1.05 mM). Glutamate is taken up by a symport with two H+ ions, leading to substantial accumulation in the cytosol at low pH values.  相似文献   

11.
The protein motive force of metabolizing Bacillus subtilis cells was only slightly affected by changes in the external pH between 5 and 8, although the electrical component and the chemical component of the proton motive force contributed differently at different external pH. The electrical component of the proton motive force was very small at pH 5, and the chemical component was almost negligible at pH 7.5. At external pH values between 6 and 7.7, swimming speed of the cells stayed constant. Thus, either the electrical component or the chemical component of the proton motive force could drive the flagellar motor. When the proton motive force of valinomycin-treated cells was quantitatively decreased by increasing the external K+ concentration, the swimming speed of the cells changed in a unique way: the swimming speed was not affected until about--100 mV, then decreased linearly with further decrease in the proton motive force, and was almost zero at about--30 mV. The rotation rate of a flagellum, measured by a tethered cell, showed essentially the same characteristics. Thus, there are a threshold proton motive force and a saturating proton motive force for the rotation of the B. subtilis flagellar motor.  相似文献   

12.
Various methods of manipulation of the intracellular pH in Streptococcus lactis result in a unique relationship between the rate of glutamate and glutamine transport and the cytoplasmic pH. The initial rate of glutamate uptake by S. lactis cells increases more than 30-fold when the intracellular pH is raised from 6.0 to 7.4. A further increase of the cytoplasmic pH to 8.0 was without effect on transport. The different levels of inhibition of glutamate and glutamine transport at various external pH values by uncouplers and ionophores, which dissipate the proton motive force, can be explained by the effects exerted on the intracellular pH. The dependence of glutamate transport on the accumulation of potassium ions in potassium-filled and -depleted cells is caused by the regulation of intracellular pH by potassium movement.  相似文献   

13.
Bacteria can acquire genetic diversity, including antibiotic resistance and virulence traits, by horizontal gene transfer. In particular, many bacteria are naturally competent for uptake of naked DNA from the environment in a process called transformation. Here, we used optical tweezers to demonstrate that the DNA transport machinery in Bacillus subtilis is a force-generating motor. Single DNA molecules were processively transported in a linear fashion without observable pausing events. Uncouplers inhibited DNA uptake immediately, suggesting that the transmembrane proton motive force is needed for DNA translocation. We found an uptake rate of 80 +/- 10 bp s(-1) that was force-independent at external forces <40 pN, indicating that a powerful molecular machine supports DNA transport.  相似文献   

14.
A mutant of Haemophilus influenzae was isolated which was completely unable to take up double-stranded homologous deoxyribonucleic acid (DNA) at normal physiological conditions but which took up DNA equally as well as the wild type at low pH (pH 4.4). The properties of the mutant provide evidence for the existence of two different mechanisms for DNA entry in the H. influenzae transformation system. With the aid of the mutant the optimal conditions for entry of DNA by these two mechanisms were determined, and the dependence of entry and the specific transforming activity of the entered DNA on competence was examined. The mechanism of entry of DNA at neutral pH, which is not functioning in the mutant, effected entry of homologous DNA only, whereas the mechanism involved in entry of DNA at low pH also effected entry of heterologous DNA. This suggests that the mutant is lacking a protein which recognizes the specific base sequence(s) required for entry. Comparison of the protein composition of the membranes of mutant cells subjected to a growth regimen provoking competence in wild-type cells with that of competent wild-type cells revealed that the mutant is impaired in the synthesis of a protein with a molecular weight of 22,500.  相似文献   

15.
R. J. Redfield 《Genetics》1993,133(4):755-761
The hypothesis that the primary function of bacterial transformation is DNA repair was tested in the naturally transformable bacteria Bacillus subtilis and Haemophilus influenzae by determining whether competence for transformation is regulated by DNA damage. Accordingly, DNA damage was induced by mitomycin C and by ultraviolet radiation at doses that efficiently induced a known damage-inducible gene fusion, and the ability of the damaged cultures to transform was monitored. Experiments were carried out both under conditions where cells do not normally become competent and under competence-inducing conditions. No induction or enhancement of competence by damage was seen in either organism. These experiments strongly suggest that the regulation of competence does not involve a response to DNA damage, and thus that explanations other than DNA repair must be sought for the evolutionary functions of natural transformation systems.  相似文献   

16.
Transport of lactose and methyl beta-D-thiogalactopyranoside, a melibiose analogue, was studied in intact cells of Escherichia coli. A proton motive force could drive the translocation of these solutes via these two transport systems, but the initial rates and steady-state levels of solute accumulation increased upon initiation of electron transfer. When the absolute value of the proton motive force was decreased by ionophores the steady-state levels of lactose accumulation did not decrease as expected if thermodynamic equilibrium with the proton motive force had existed. Accumulation of lactose was also observed in the absence of any measurable proton motive force as long as electron transfer took place. Since both proton/lactose and sodium/methyl beta-D-thiogalactopyranoside symport showed the same characteristics, an explanation based on local proton diffusion pathways is unlikely.  相似文献   

17.
The ability of some bacteria to take up and recombine DNA from the environment is an important evolutionary problem because its function is controversial; although populations may benefit in the long-term from the introduction of new alleles, cells also reap immediate benefits from the contribution of DNA to metabolism. To clarify how selection has acted, we have characterized competence in natural isolates of H. influenzae by measuring DNA uptake and transformation. Most of the 34 strains we tested became competent, but the amounts of DNA they took up and recombined varied more than 1000-fold. Differences in recombination were not due to sequence divergence and were only partly explained by differences in the amounts of DNA taken up. One strain was highly competent during log phase growth, unlike the reference strain Rd, but several strains did not develop competence under any of the tested conditions. Analysis of competence genes identified genetic defects in two poorly transformable strains. These results show that strains can differ considerably in the amount of DNA they take up and recombine, indicating that the benefit associated with competence is likely to vary in space and/or time.  相似文献   

18.
Cells of Haemophilus influenzae strain Rd competent for genetic transformation irreversibly bound approximately five molecular fragments of H. influenzae deoxyribonucleic acid (DNA) per cell; under identical conditions, DNA derived from Escherichia coli B was not taken up (<1 molecule per 50 cells). Similarly, DNA from Xenopus laevis was not taken up by competent H. influenzae. Of the heterologous DNAs tested, only DNA from H. parainfluenzae interfered with the uptake of H. influenzae DNA, as judged by competition experiments employing either DNA binding or genetic transformation as the test system. The extracellular heterologous DNA did not suffer either single- or double-strand breakage upon exposure to competent H. influenzae.  相似文献   

19.
The magnitude of the transmembrane electrical potential difference and the proton gradient across the energy-transducing membrane of Staphylococcus aureus were determined. The delta psi value was shown to rise from 100 to 160 mV upon alkalinization of the medium within the pH range of 5.0-8.0; at the same time, the pH value dropped from 90 to 40 mV. The proton motive force magnitude remained within the range of 191-198 mV at the pH values under study. Membrane potential generation took place, when the respiratory chain and H+-ATPase were operative. An addition of phages to cell suspensions resulted in a decrease of the membrane potential magnitude. Phage infection was effectively suppressed by inhibitors which affect the proton motive force generation in cell membranes of staphylococci.  相似文献   

20.
Ranhand, Jon M. (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Periodate inhibition of transformation and competence development in Haemophilus influenzae. J. Bacteriol. 92:956-959. 1966.-Periodate treatment of competent cells reduced the frequency of transformation to streptomycin resistance about 90% while reducing cell viability about 30% or less. Moreover, when periodate was added to cells early in the competence-development phase, these, too, were unable to develop maximal competence. Periodate inhibition was dependent on time and concentration as well as on the composition of the suspending menstruum. Periodate had no effect on transforming deoxyribonucleic acid (DNA), nor did it prevent transformation when added to competent cells which had already reacted with DNA. Furthermore, the progeny from cells inactivated 90% could be made fully competent, showing that the inhibition was not genetic. It was concluded that the periodate-sensitive substrate may involve the DNA binding site(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号