首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this experiment was to determine whether the time of day of single intravenous doses of gentamicin affects the drug's pharmacokinetics in dogs maintained under a 12 h light (08:00 to 20:00 h), 12 h dark (20:00 to 08:00 h) cycle. Using a crossover design, 6 mixed-breed male dogs received a single dose of 2 mg/kg of gentamicin at 8:00 or 20:00 h. Serial blood samples were collected and pharmacokinetic parameters were calculated following each timed dose. The concentration of the antibiotic was lower following the 08:00 h compared to the 20:00 h administration. When gentamicin was administered at 20:00 h, the initial concentration, mean residence time, and area under the disposition curve were significantly higher (p < 0.05) and the apparent volume of distribution of the central compartment, apparent volume of distribution, apparent volume of distribution at steady-state, and total body clearance (1.73+/-0.55 at 20:00 h versus 3.31+/-0.67 L/min/kg at 08:00 h) were significantly lower than for the 08:00 h administration (p < 0.05). Our results show that the pharmacokinetics of gentamicin exhibits significant temporal variation when administered to dogs at different times of day.  相似文献   

2.
Most of the physiological processes that take place in the organism follow a circadian rhythm. Serotonin is one of the most important neurotransmitters in our nervous system, and has been strongly implicated in the regulation on the mammalian circadian clock, located in the suprachiasmatic nuclei (SCN). The present study analysed the levels of serotonin over a period of 24 h in the plasma and in different brain regions. The model used was of male Wistar rats, 14 +/- 2 weeks of age (n = 120), maintained under conditions of 12 h light and 12 h dark, and food and water ad libitum. The serotonin levels were measured by ELISA every hour at night (20:00-08:00 h) and every 4 h during the daytime (08:00-20:00 h). Ours results show that the maximum levels of serotonin in plasma were obtained at 09:00 and 22:00 and a minor peak at 01:00 h. In hypothalamus there was a significant peak at 22:00 and two minor peaks at 17:00 and 02:00 h; the same occurred in hippocampus with a significant peak at 21:00, and two secondary peaks at 24:00 and 05:00 h; in cerebellum there were two peaks at 21:00 and 02:00 h, while in striatum and pineal there were peaks at 21:00 h and 23:00, respectively. In conclusion, the higher levels of serotonin were during the phase of darkness, which varies depending on the region in which it is measured.  相似文献   

3.
Chronotoxicity of nedaplatin in rats   总被引:3,自引:0,他引:3  
Chronotoxicologic profiles of nedaplatin, a platinum compound, were evaluated in rats maintained under a 12 light/12 dark cycle with light from 07:00h to 19:00 h. Nedaplatin (5 mg/kg) was injected intravenously, once a week for 5 weeks at 08:00h or 20:00h. The suppression of body weight gain and reduction of creatinine clearance were significantly greater with the 20:00h than 08:00h treatment. Accumulation of nedaplatin in the renal cortex and bone marrow were also greater with 20:00 h treatment. There were significant relationships between the nedaplatin content in the kidney and bone marrow and degree of injury to each. These results suggest that the nedaplatin-induced toxicity depends on its dosing-time, and it is greater with treatment at 20:00 h, during the active phase. The dosing-time dependency in the accumulation of nedaplatin in the tissue of the organs might be involved in this chronotoxicologic phenomenon.  相似文献   

4.
《Chronobiology international》2013,30(4-5):601-611
Chronotoxicologic profiles of nedaplatin, a platinum compound, were evaluated in rats maintained under a 12 light/12 dark cycle with light from 07:00 h to 19:00 h. Nedaplatin (5 mg/kg) was injected intravenously, once a week for 5 weeks at 08:00 h or 20:00 h. The suppression of body weight gain and reduction of creatinine clearance were significantly greater with the 20:00 h than 08:00 h treatment. Accumulation of nedaplatin in the renal cortex and bone marrow were also greater with 20:00 h treatment. There were significant relationships between the nedaplatin content in the kidney and bone marrow and degree of injury to each. These results suggest that the nedaplatin-induced toxicity depends on its dosing-time, and it is greater with treatment at 20:00 h, during the active phase. The dosing-time dependency in the accumulation of nedaplatin in the tissue of the organs might be involved in this chronotoxicologic phenomenon.  相似文献   

5.
The purpose of this experiment was to determine whether the time of day of single intravenous doses of gentamicin affects the drug's pharmacokinetics in dogs maintained under a 12 h light (08:00 to 20:00 h), 12 h dark (20:00 to 08:00 h) cycle. Using a crossover design, 6 mixed‐breed male dogs received a single dose of 2 mg/kg of gentamicin at 8:00 or 20:00 h. Serial blood samples were collected and pharmacokinetic parameters were calculated following each timed dose. The concentration of the antibiotic was lower following the 08:00 h compared to the 20:00 h administration. When gentamicin was administered at 20:00 h, the initial concentration, mean residence time, and area under the disposition curve were significantly higher (p<0.05) and the apparent volume of distribution of the central compartment, apparent volume of distribution, apparent volume of distribution at steady‐state, and total body clearance (1.73±0.55 at 20:00 h versus 3.31±0.67 L/min/kg at 08:00 h) were significantly lower than for the 08:00 h administration (p<0.05). Our results show that the pharmacokinetics of gentamicin exhibits significant temporal variation when administered to dogs at different times of day.  相似文献   

6.
Chronotoxicologic profiles of nedaplatin, a platinum compound, were evaluated in rats maintained under a 12 light/12 dark cycle with light from 07:00 h to 19:00 h. Nedaplatin (5 mg/kg) was injected intravenously, once a week for 5 weeks at 08:00 h or 20:00 h. The suppression of body weight gain and reduction of creatinine clearance were significantly greater with the 20:00 h than 08:00 h treatment. Accumulation of nedaplatin in the renal cortex and bone marrow were also greater with 20:00 h treatment. There were significant relationships between the nedaplatin content in the kidney and bone marrow and degree of injury to each. These results suggest that the nedaplatin-induced toxicity depends on its dosing-time, and it is greater with treatment at 20:00 h, during the active phase. The dosing-time dependency in the accumulation of nedaplatin in the tissue of the organs might be involved in this chronotoxicologic phenomenon.  相似文献   

7.
We previously showed that the kaolin-induced writhe reaction exhibits 24h variation with a peak at the end of the resting period (14:00–18:00h) in mice maintained under light from 07:00 to 19:00h. In this study, we used this model to evaluate the administration-time-dependent (chronopharmacodynamic) effect of indomethacin. Indomethacin (0.5 mg/kg) was given orally to mice at 02:00, 08:00, 14:00, or 20:00h, and the suppressive effect on kaolin-induced writhing was determined after each timed dosing. After dosing at 08:00h, indomethacin remarkably reduced the number of writhes during the critical span of 14:00–18:00h—the time when writhing reaction was greatest during the 24h, while the suppressive effect of the medicine after dosing at the other clock times was relatively small. These data suggest the analgesic effect of indomethacin in mice with the kaolin-induced writhing is greater after dosing in the early resting period, which is similar to that reported in patients with nocturnal pain. The kaolin-induced pain mouse model seems to be useful for the chronopharmacodynamic evaluation of analgesic agents.  相似文献   

8.
We aimed to investigate the daily variations of serum granulocyte-macrophage colony-stimulating factor (GM-CSF) levels and to correlate them with peripheral blood cells counts. Venous blood samples from eleven healthy volunteers were taken four times a day, being at 08:00, 14:00, 20:00 and 02:00h and serum GM-CSF levels measured by ELISA. We could not find a significant overall difference among GM-CSF levels at four different times of the day using the Friedman test. On the other hand, serum GM-CSF levels at night (20:00h) were found to be significantly increased when compared to the morning levels (08:00h) using the Wilcoxon test (P=0. 022). The levels of lymphocytes and white blood cells (WBCs) at 20:00h were also higher than the morning levels (08:00h) as expected. While there was a strong relationship between the morning levels of GM-CSF (08:00h) and all measurements of peripheral blood cells during the day, the levels of GM-CSF measured at 02:00, 14:00 and 20:00h were found to be significantly correlated with only the WBC levels. It was concluded that there may be a significant difference between morning and night levels of GM-CSF and morning levels of GM-CSF may be more important in the regulation of WBC counts during the day. These variations warrant further studies about diurnal rhythms of haematopoiesis chronotherapy with CSFs.  相似文献   

9.
Dosing‐time–dependent differences in lipopolysaccharide (LPS)‐induced liver injury were examined in rats housed under a 12 h light∶dark (LD) cycle. LPS (5 mg/kg) was intravenously injected into different groups of rats at 2, 14, or 20 h after light on (HALO). Elevations in serum liver enzymes after 14 HALO were significantly greater than those after 2 HALO. These parameters were lower in rats given LPS at 20 HALO, compared to 14 HALO. The number of polymorphonuclear cells (PMN) in the liver and the amount of hepatic myeloperoxidase activity, which reflects the number of PMN in liver tissues, was significantly greater in the 14 than in the 2 HALO group. In addition, hepatic interleukin‐6 (IL‐6) production in the 14 HALO group was enhanced compared to that in the 2 HALO trial. These results suggest that LPS‐induced liver injury is greater during the early active than during the early resting period. Dosing‐time–dependent variation in the accumulation of PMN in the liver and, potentially, subsequent IL‐6 production in liver tissues might be involved in this phenomenon.  相似文献   

10.
Daily variations in the pharmacokinetics of imipramine (IMI) could contribute to circadian phase-dependent effects of the drug. Therefore, the chronopharmacokinetics of IMI and its metabolite, desipramine (DMI), were studied after single and chronic application. Male rats were synchronized to a 12:12 hour light:dark (L:D) regimen with lights on from 07:00 to 19:00 (dark, 19:00-07:00). In single-dose experiments rats were injected with IMI (10 mg/kg) i.p. or i.v. at 07:30 or 19:30 and groups of rats were killed 0-22 hours thereafter. After chronic application of IMI in drinking water (approximately 15 mg/kg/d) groups of rats were killed during the 14th day of treatment at 02:00, 08:00, 14:00, and 20:00, respectively. Brain and plasma concentrations of IMI and DMI were determined by reversed-phase high-performance liquid chromatography with ultraviolet detection. After single i.p. application of IMI, maximal brain concentrations (Cmax) of IMI and DMI were nearly twofold higher in darkness (IMI, 4.8 micrograms/g; DMI, 1.8 micrograms/g) than in light (IMI, 2.85 micrograms/g; DMI, 0.85 microgram/g). Also, the area under the curve (AUC) (0-22 hours) was about 1.6-fold greater in darkness than in light for IMI and DMI; half-lives were not circadian phase dependent. After i.v. injection of IMI, the AUC in brain was also about 30% greater in darkness than in light. After chronic application of IMI in drinking water, brain concentrations of IMI and DMI varied more than threefold within 24 hours. The data demonstrate that the pharmacokinetics of IMI and DMI are circadian phase dependent. It is assumed that circadian variations in drug distribution are more likely to contribute to the drug's chronopharmacokinetics than variations in the drug's metabolism. The 24-hour variations in the drug's concentrations after chronic IMI application in drinking water can be explained by the drinking behavior of the rats, which by itself is altered by IMI.  相似文献   

11.
In a previous study we found that daytime exposure to bright as compared to dim light exerted a beneficial effect on the digestion of the evening meal. This finding prompted us to examine whether the digestion of the evening meal is also affected by evening light intensity. Subjects lived in light of 200 lux during the daytime (08:00–17:00 h) and took their evening meal at 17:00 h under 20 lux (evening dim‐light condition: 17:00–02:00 h) or 2000 lux (evening bright‐light condition: 17:00–02:00 h) until retiring at 02:00 h. Assessment of carbohydrate digestion of the evening meal was accomplished by a breath hydrogen test that is indicative of the malabsorption of dietary carbohydrate. Hydrogen excretion in the breath in the evening under the dim‐light condition was significantly less than under the bright‐light condition (p < 0.05). This finding is the opposite to that obtained in previous experiments in which subjects were exposed to the different intensities of light during the daytime, and indicates that the exposure to dim light in the evening exerts a better effect on carbohydrate digestion in the evening meal than does the exposure to bright light.  相似文献   

12.
We previously showed that the kaolin-induced writhe reaction exhibits 24h variation with a peak at the end of the resting period (14:00-18:00h) in mice maintained under light from 07:00 to 19:00h. In this study, we used this model to evaluate the administration-time-dependent (chronopharmacodynamic) effect of indomethacin. Indomethacin (0.5 mg/kg) was given orally to mice at 02:00, 08:00, 14:00, or 20:00h, and the suppressive effect on kaolin-induced writhing was determined after each timed dosing. After dosing at 08:00h, indomethacin remarkably reduced the number of writhes during the critical span of 14:00-18:00h—the time when writhing reaction was greatest during the 24h, while the suppressive effect of the medicine after dosing at the other clock times was relatively small. These data suggest the analgesic effect of indomethacin in mice with the kaolin-induced writhing is greater after dosing in the early resting period, which is similar to that reported in patients with nocturnal pain. The kaolin-induced pain mouse model seems to be useful for the chronopharmacodynamic evaluation of analgesic agents.  相似文献   

13.
Daily variations in the pharmacokinetics of imipramine (IMI) could contribute to circadian phase-dependent effects of the drug. Therefore, the chronopharmacokinetics of IMI and its metabolite, desipramine (DMI), were studied after single and chronic application. Male rats were synchronized to a 12:12 hour lightdark (L:D) regimen with lights on from 07:00 to 19:00 (dark, 19:00-07:00). In single-dose experiments rats were injected with IMI (10 mg/kg) i.p. or i.v. at 07:30 or 19:30 and groups of rats were killed 0-22 hours thereafter. After chronic application of IMI in drinking water (≈ 15 mg/kg/d) groups of rats were killed during the 14th day of treatment at 02:00, 08:00, 14:00, and 20:00, respectively. Brain and plasma concentrations of IMI and DMI were determined by reversed-phase high-performance liquid chromatography with ultraviolet detection. After single i.p. application of IMI, maximal brain concentrations (Cmax) of IMI and DMI were nearly twofold higher in darkness (IMI, 4.8 μg/g; DMI, 1.8 μg/g) than in light (IMI, 2.85 Mg/g; DMI, 0.85 Mg/g). Also, the area under the curve (AUC) (0-22 hours) was about 1.6-fold greater in darkness than in light for IMI and DMI; half-lives were not circadian phase dependent. After i.v. injection of IMI, the AUC in brain was also about 30% greater in darkness than in light. After chronic application of IMI in drinking water, brain concentrations of IMI and DMI varied more than threefold within 24 hours. The data demonstrate that the pharmacokinetics of IMI and DMI are circadian phase dependent. It is assumed that circadian variations in drug distribution are more likely to contribute to the drug's chronopharmacokinetics than variations in the drug's metabolism. The 24-hour variations in the drug's concentrations after chronic IMI application in drinking water can be explained by the drinking behavior of the rats, which by itself is altered by IMI.  相似文献   

14.
Dosing-time-dependent differences in lipopolysaccharide (LPS)-induced liver injury were examined in rats housed under a 12 h light:dark (LD) cycle. LPS (5 mg/kg) was intravenously injected into different groups of rats at 2, 14, or 20 h after light on (HALO). Elevations in serum liver enzymes after 14 HALO were significantly greater than those after 2 HALO. These parameters were lower in rats given LPS at 20 HALO, compared to 14 HALO. The number of polymorphonuclear cells (PMN) in the liver and the amount of hepatic myeloperoxidase activity, which reflects the number of PMN in liver tissues, was significantly greater in the 14 than in the 2 HALO group. In addition, hepatic interleukin-6 (IL-6) production in the 14 HALO group was enhanced compared to that in the 2 HALO trial. These results suggest that LPS-induced liver injury is greater during the early active than during the early resting period. Dosing-time-dependent variation in the accumulation of PMN in the liver and, potentially, subsequent IL-6 production in liver tissues might be involved in this phenomenon.  相似文献   

15.
We studied the effects of adjuvant arthritis (AA) on the endocrine circadian rhythms of plasma prolactin (PRL), growth hormone (GH), insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), testosterone, and melatonin and of pituitary PRL and GH mRNA in male Long Evans rats. Groups of control and AA rats (studied 23 days after AA induction) that were housed under a 12/12 h light/dark cycle (light on at 06:00 h) were killed at 4 h intervals starting at 14:00 h. Cosinor analysis revealed a significant 12 h rhythm in PRL and PRL mRNA (p < 0.001) in controls with peaks at 14:00 h and 02:00 h, respectively. The peak at 02:00 h was abolished in the AA group resulting in a significant 24 h rhythm in parallel with that of PRL (p < 0.05) and PRL mRNA (p < 0.0001). Growth hormone showed no rhythm, but a significant rhythm of GH mRNA was present in both groups (p < 0.0001). Insulin-like growth factor-1 showed a 24 h rhythm in control but not in AA rats. The mean values of GH, GH mRNA, and IGF-1 were significantly reduced in AA. Luteinizing hormone displayed a significant 24 h rhythm (p < 0.01) peaking in the dark period in the control but not AA group. Testosterone showed in phase temporal changes of LH levels with AA abolishing the 02:00 h peak. Melatonin exhibited a significant 24 h rhythm in control (p < 0.001) and AA (p < 0.01) rats with maximum levels during the dark phase; the mesor value was higher in the AA males. These results demonstrate that AA interferes with the rhythms of all the studied hormones except the non-24 h (arrhythmic) GH secretion pattern and the rhythm in melatonin. The persistence of a distinct melatonin rhythm in AA suggests the observed disturbances of hormonal rhythms in this condition do not occur at the level of the pineal gland.  相似文献   

16.
Some experimental procedures are associated with placement of animals in wire-bottom cages. The goal of this study was to evaluate stress-related physiological parameters (heart rate [HR], body temperature [BT], locomotor activity [LA], body weight [BW] and food consumption) in rats under two housing conditions, namely in wire-bottom cages and in bedding-bottom cages. Telemetry devices were surgically implanted in male Sprague-Dawley rats. HR, BT and LA were recorded at 5 min intervals. Analysis under each housing condition was performed from 16:00 to 08:00 h of the following day (4 h light, 12 h dark). During almost all of the light phase, the HR of rats housed in wire-bottom cages remained high (371 ± 35 bpm; mean ± SD; n = 6) and was significantly different from that of rats housed in bedding-bottom cages (340 ± 29 bpm; n = 6; P < 0.001; Student's t-test). In general, BT was similar under the two housing conditions. However, when rats were in wire-bottom cages, BT tended to fluctuate more widely during the dark phase. LA decreased when animals were housed in wire-bottom cages, in particular during the dark phase. Moreover, there was a significant difference with respect to the gain in BW: BW of rats housed in bedding-bottom cages increased 12 ± 2 g, whereas that of rats in wire-bottom cages decreased by 2 ± 3 g (P < 0.001). Our results demonstrate that housing rats in wire-bottom cages overnight leads to immediate alterations of HR, BW and LA, which might be related to a stress response.  相似文献   

17.
The aim of the study was to compare an often-used method to measure blood pressure (BP) using a tail-cuff (TC) device, with radiotelemetry (RT) which allows to sample data on heart rate (HR) and BP in freely moving rodents without any restraint in behaviour. Data were collected in male normotensive Wistar-Kyoto rats and in spontaneously hypertensive rats. Experiments were performed under 12:12 h light–dark conditions (lights on at 07:00 h) with simulated dawn and dusk for 45 min. Experiments were performed at 08:00–10:00 h (rest phase) and at 20:00–22:00 h (activity phase) under control conditions and after treatment with the beta-adrenoceptor blocker metoprolol (8 mg/kg). For TC, the Harvard BP Monitoring System (Edenbrigde, England) and for RT radio transmitters (Dataquest IV system, TA11PA-C40, DSI, St. Paul, Minnesota, USA) were used. Rats bearing the TC device were also monitored under RT. The experiments show that TC significantly increased HR and both systolic and diastolic BP in both strains and both at L and D. Metoprolol reduced TC-induced HR but left BP increase uneffected. The study shows that RT is the method of choice to monitor BP and HR in rodents, TC is not suitable.  相似文献   

18.
Jet lag degrades performance and operational readiness of recently deployed military personnel and other travelers. The objective of the studies reported here was to determine, using a narrow bandwidth light tower (500 nm), the optimum timing of light treatment to hasten adaptive circadian phase advance and delay. Three counterbalanced treatment order, repeated measures studies were conducted to compare melatonin suppression and phase shift across multiple light treatment timings. In Experiment 1, 14 normal healthy volunteers (8 men/6 women) aged 34.9±8.2 yrs (mean±SD) underwent light treatment at the following times: A) 06:00 to 07:00 h, B) 05:30 to 07:30 h, and C) 09:00 to 10:00 h (active control). In Experiment 2, 13 normal healthy subjects (7 men/6 women) aged 35.6±6.9 yrs, underwent light treatment at each of the following times: A) 06:00 to 07:00 h, B) 07:00 to 08:00 h, C) 08:00 to 09:00 h, and a no-light control session (D) from 07:00 to 08:00 h. In Experiment 3, 10 normal healthy subjects (6 men/4 women) aged 37.0±7.7 yrs underwent light treatment at the following times: A) 02:00 to 03:00 h, B) 02:30 to 03:30 h, and C) 03:00 to 04:00 h, with a no-light control (D) from 02:30 to 03:30 h. Dim light melatonin onset (DLMO) was established by two methods: when salivary melatonin levels exceeded a 1.0 pg/ml threshold, and when salivary melatonin levels exceeded three times the 0.9 pg/ml sensitivity of the radioimmunoasssy. Using the 1.0 pg/ml DLMO, significant phase advances were found in Experiment 1 for conditions A (p?<?.028) and B (p?<?0.004). Experiment 2 showed significant phase advances in conditions A (p?<?0.018) and B (p?<?0.003) but not C (p?<?0.23), relative to condition D. In Experiment 3, only condition B (p?<?0.035) provided a significant phase delay relative to condition D. Similar but generally smaller phase shifts were found with the 2.7 pg/ml DLMO method. This threshold was used to analyze phase shifts against circadian time of the start of light treatment for all three experiments. The best fit curve applied to these data (R2?=?0.94) provided a partial phase-response curve with maximum advance at approximately 9–11 h and maximum delay at approximately 5–6 h following DLMO. These data suggest largest phase advances will result when light treatment is started between 06:00 and 08:00 h, and greatest phase delays will result from light treatment started between 02:00 to 03:00 h in entrained subjects with a regular sleep wake cycle (23:00 to 07:00 h).  相似文献   

19.
In male Wistar rats [light (L): 07:00–19:00 h, dark (D): 19:00–07:00 h], the effects of the calcium channel blocker amlodipine (1, 3, 10 mg/kg i.p.) on blood pressure, heart rate, and motor activity were studied by telemetric monitoring. Amlodipine was injected either at 07:00 h or at 19:00 h. Systolic and diastolic blood pressure were dose-dependently decreased with more pronounced effects in the dark span, ED50 values in D were about seven times lower than in L. In contrast, the dose-dependent increase in heart rate was more pronounced in L than in D. No significant effects of amlodipine were found on motor activity. The study gives evidence for a circadian phase-dependency in the cardiovascular effects amlodipine in rats.  相似文献   

20.
Dopamine levels were measured in the corpus striatum, upper and lower brainstem at 6 hour intervals for a period of 24 hours in rats adapted for 3 weeks to either of two concomitantly-conducted lighting programs. On the normal cycle the animals were illuminated from 08(00)--20(00); on the reverse cycle, from 20(00)--08(00). In the corpus striatum dopamine levels peaked during the dark phase of both illumination cycles indicating that 24 hour rhythm is exogenous. On the other hand, in the upper and lower brainstem, dopamine peaks occurred in both light cycles at 00(00) or 06(00) indicating that these 24 hour rhythms are endogenous in nature. Photoperiod reversal resulted in significantly elevated dopamine levels in the corpus striatum and lower brainstem. The existence of a stress as well as a seasonal factor which affects striatal dopamine is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号