首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian disruption accelerates malignant growth; thus, it should be avoided in anticancer therapy. The circadian disruptive effects of irinotecan, a topoisomerase I inhibitor, was investigated according to dosing time and sex. In previous work, irinotecan achieved best tolerability following dosing at zeitgeber time (ZT) 11 in male and ZT15 in female mice, whereas worst toxicity corresponded to treatment at ZT23 and ZT3 in male and female mice, respectively. Here, irinotecan (50 mg/kg intravenous [i.v.]) was delivered at the sex-specific optimal or worst circadian timing in male and female B6D2F1 mice. Circadian disruption was assessed with rest-activity, body temperature, plasma corticosterone, and liver mRNA expressions of clock genes Rev-erbα, Per2, and Bmal1. Baseline circadian rhythms in rest-activity, body temperature, and plasma corticosterone were more prominent in females as compared to males. Severe circadian disruption was documented for all physiology and molecular clock endpoints in female mice treated at the ZT of worst tolerability. Conversely, irinotecan administration at the ZT of best tolerability induced slight alteration of circadian physiology and clock-gene expression patterns in female mice. In male mice, irinotecan produced moderate alterations of circadian physiology and clock-gene expression patterns, irrespective of treatment ZT. However, the average expression of Rev-erbα, Per2, and Bmal1 were down-regulated 2- to 10-fold with irinotecan at the worst ZT, while being minimally or unaffected at the best ZT, irrespective of sex. Corticosterone secretion increased acutely within 2?h with a sex-specific response pattern, resulting in a ZT-dependent phase-advance or -delay in both sex. The mRNA expressions of irinotecan clock-controlled metabolism genes Ce2, Ugt1a1, and Top1 were unchanged or down-regulated according to irinotecan timing and sex. This study shows that the circadian timing system represents an important toxicity target of irinotecan in female mice, where circadian disruption persists after wrongly timed treatment. As a result, the mechanisms underling cancer chronotherapeutics are expectedly more susceptible to disruption in females as compared to males. Thus, the optimal circadian timing of chemotherapy requires precise determination according to sex, and should involve the noninvasive monitoring of circadian biomarkers.  相似文献   

2.
3.
Circadian clocks control cellular proliferation and drug metabolism over the 24?h. However, circadian chronomodulated chemotherapy with 5-fluorouracil, leucovorin, and oxaliplatin (chronoFLO4) offered no survival benefit as compared with the non–time-stipulated FOLFOX2, in an international randomized trial involving patients with previously untreated metastatic colorectal cancer (EORTC 05963). The authors hypothesized that treatment near maximum tolerated dose could disrupt circadian clocks thus impairing the efficacy of chronoFLO4 but not of FOLFOX2. Patients with available data (N?=?556) were categorized into three subgroups according to the worst grade (G) of neutropenia experienced during treatment. Distinct multivariate models with time-dependent covariates were constructed for each treatment schedule. Neutropenia incidence (all grades) was 33% on chronoFLO4 and 61% on FOLFOX2 (p?<?.0001), and G3–4 were 7% and 25%, respectively (p < .0001). Neutropenia was significantly more frequent in women than men on either schedule (FOLFOX2, p = .003; chronoFLO4, p = .04). Median survival was 20.7 mo in patients with G3–4 neutropenia versus 12.5 mo in neutropenia-free patients on FOLFOX2 (p < .0001). Corresponding figures were 13.7 and 19.4 mo, respectively, on chronoFLO4 (p?=?.36). Multivariate analysis confirmed occurrence of severe neutropenia independently predicted for better overall survival on FOLFOX2 (HR?=?0.56; p = .015), and worse survival on chronoFLO4 (HR?=?1.77, p = .06), with a significant interaction test (p < .0001). Prediction of better survival in neutropenic patients on FOLFOX2 supports the administration of conventional chemotherapy near maximum tolerated dose. The opposite trend shown here for chronoFLO4 supports the novel concept of jointly optimized hematologic tolerability and efficacy through personalized circadian-timed therapy. (Author correspondence: )  相似文献   

4.

Background

ATP-binding cassette transporter abcc2 is involved in the cellular efflux of irinotecan. The drug is toxic for mouse ileum, where abcc2 is highly expressed. Here, we investigate whether circadian changes in local abcc2 expression participate in the circadian rhythm of irinotecan toxicity for ileum mucosa, and further assess whether genetic background or sex modify this relation.

Methodology/Principal Findings

Ileum mucosa was obtained every 3–4 h for 24 h in male and female B6D2F1 and B6CBAF1 mice synchronized with light from Zeitgeber Time (ZT)0 to ZT12 alternating with 12 h of darkness. Irinotecan (50 mg/kg i.v. daily for 4 days) was administered at the sex- and strain-specific times corresponding to least (ZT11-15) or largest drug-induced body weight loss (ZT23-03-07). Abcc2 expression was determined with qRT-PCR for mRNA and with immunohistochemistry and confocal microscopy for protein. Histopathologic lesions were graded in ileum tissues obtained 2, 4 or 6 days after treatment. Two- to six-fold circadian changes were demonstrated for mRNA and protein mean expressions of abcc2 in mouse ileum (p<0.05). ZT12 corresponded to high mRNA and protein expressions, with circadian waveforms differing according to genetic background and sex. The proportion of mice spared from ileum lesions varied three-fold according to irinotecan timing, with best tolerability at ZT11-15 (p = 0.00003). Irinotecan was also best tolerated in males (p = 0.05) and in B6CBAF1 (p = 0.0006).

Conclusions/Significance

Strain- and sex-dependent circadian patterns in abcc2 expressions displayed robust relations with the chronotolerance of ileum mucosa for irinotecan. This finding has strong potential implications for improving the intestinal tolerability of anticancer drugs through circadian delivery.  相似文献   

5.
The circadian timing system determines the optimal timing and waveform of drug tolerability, yet treatment itself can alter this system. Gemcitabine is an antimetabolite agent that is active against lung and pancreatic cancers. Tolerability for this drug is best following dosing at ZT 11 in mice. The authors investigated the effects of gemcitabine on the circadian rhythms in body temperature and rest activity as physiological markers of the circadian timing system. Healthy unrestrained B6D2F(1) mice implanted with radiotelemetry transmitters were kept in LD 12:12 prior to receiving a single intravenous dose of gemcitabine (200, 400, or 600 mg/kg) at ZT 11 or 23. Gemcitabine (400 mg/kg) transiently suppressed the body temperature rhythm in 50% of the mice dosed at ZT 23, as compared to none of the mice treated at ZT 11 within the 2 days following drug dosing (Fisher 's exact test p = 0.04). The rest-activity circadian rhythm was suppressed in 40% (ZT 11) and 50% (ZT 23) of the mice, respectively. In the mice with persistent circadian rhythms, gemcitabine delivery at ZT 23 resulted in more prominent decreases and slower recovery of circadian mesor and amplitude of both rhythms as compared to mice treated at ZT 11. Gemcitabine also induced a transient internal desynchronization between temperature and activity rhythms following dosing at ZT 23 but not at ZT 11. The delivery of a single therapeutic dose of gemcitabine near its time of least toxicity produced least alterations in circadian physiological outputs, a finding that suggests that the extent of circadian disruption contributes to toxicokinetic processes.  相似文献   

6.
7.
Recent studies have demonstrated that metabolic changes in mammals induce feedback regulation of the circadian clock. The present study evaluates the effects of a low-carbohydrate high-protein diet (HPD) on circadian behavior and peripheral circadian clocks in mice. Circadian rhythms of locomotor activity and core body temperature remained normal in mice fed with the HPD diet (HPD mice), suggesting that it did not affect the central clock in the hypothalamus. Two weeks of HPD feeding induced mild hypoglycemia without affecting body weight, although these mice consumed more calories than mice fed with a normal diet (ND mice). Plasma insulin levels were increased during the inactive phase in HPD mice, but increased twice, beginning and end of the active phase, in ND mice. Expression levels of the key gluconeogenic regulatory genes PEPCK and G6Pase were significantly induced in the liver and kidneys of HPD mice. The HPD appeared to induce peroxisome proliferator-activated receptor α (PPARα) activation, since mRNA expression levels of PPARα and its typical target genes, such as PDK4 and Cyp4A10, were significantly increased in the liver and kidneys. Circadian mRNA expression of clock genes, such as BMAL1, Cry1, NPAS2, and Rev-erbα, but not Per2, was significantly phase-advanced, and mean expression levels of BMAL1 and Cry1 mRNAs were significantly elevated, in the liver and kidneys of HPD mice. These findings suggest that a HPD not only affects glucose homeostasis, but that it also advances the molecular circadian clock in peripheral tissues. (Author correspondence: )  相似文献   

8.
9.
《Chronobiology international》2013,30(7):1462-1469
In our modern society, we are exposed to different artificial light sources that could potentially lead to disturbances of circadian rhythms and, hence, represent a risk for health and welfare. Investigating the acute impact of light on clock-gene expression may thus help us to better understand the mechanisms underlying disorders rooted in the circadian system. Here, we show an overall significant reduction in PER2 expression in oral mucosa with aging in the morning, noon, and afternoon. In the afternoon, 10?h after exposure to early morning blue light, PER2 was significantly elevated in the young compared to green light exposure and to older participants. Our findings demonstrate that human buccal samples are a valuable tool for studying clock-gene rhythms and the response of PER2 to light. Additionally, our results indicate that the influence of light on clock-gene expression in humans is altered with age. (Author correspondence: )  相似文献   

10.
11.
12.
The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings. (Author correspondence: )  相似文献   

13.
14.
The circadian timing system controls many biological functions in mammals including xenobiotic metabolism, detoxification, cell proliferation, apoptosis and immune functions. Everolimus is a mammalian target of rapamycin inhibitor, whose immunosuppressant properties are both desired in transplant patients and unwanted in cancer patients, where it is indicated for its antiproliferative efficacy. Here we sought whether everolimus circadian timing would predictably modify its immunosuppressive effects so as to optimize this drug through timing. C57BL/6J mice were synchronized with light-dark 12h:12h, with L onset at Zeitgeber Time (ZT) 0. Everolimus was administered orally to male (5 mg/kg/day) and female mice (15 mg/kg/day) at ZT1, during early rest span or at ZT13, during early activity span for 4 weeks. Body weight loss, as well as hematological, immunological and biochemical toxicities, were determined. Spleen and thymus were examined histologically. Everolimus toxicity was less severe following dosing at ZT13, as compared to ZT1, as shown with least body weight inhibition in both genders; least reductions in thymus weight both in males (p < 0.01) and females (p < 0.001), least reduction in female spleen weight (p < 0.05), and less severe thymic medullar atrophy both in males (p < 0.001) and females (p < 0.001). The mean circulating counts in total leukocytes, total lymphocytes, T-helper and B lymphocytes displayed minor and non-significant changes following dosing at ZT13, while they were decreased by 56.9% (p < 0.01), 45.5% (p < 0.01), 43.1% (p < 0.05) and 48.7% (p < 0.01) after everolimus at ZT1, respectively, in only male mice. Chronotherapy of everolimus is an effective way to increase the general tolerability and decrease toxicity on the immune system.  相似文献   

15.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors. (Author correspondence: )  相似文献   

16.
17.
《Chronobiology international》2013,30(8):1514-1544
The mammalian circadian gene, mPer2, an indispensable component of the mammalian circadian clock, not only modulates endogenous circadian rhythms but also plays a crucial role in regulating innate immune function. Previously, we showed that mPer2 plays a crucial role in regulating cytotoxic response. To investigate the molecular mechanism for mPer2-controlled cytotoxic response, in the present study we conducted mRNA expression for 11 genes participating in cytotoxicity regulation in wild-type (WT) and mPer2 knockout (mPer2 ?;?;?/ ?;?;?) mice bone marrow, that is, Dap-10, Ly49C, Ly49I, Rac1, Mapk1, Map2k1, Nkg2d, Shp-1, Pak1, Pik3ca, and Vav1. The mRNA levels of Ly49C (p?<?0.001), Ly49I (p?=?0.039), and Nkg2d (p?=?0.038) were significantly downregulated in mPer2 ?;?;?/ ?;?;? mice. Time-dependence of expression profiling was then conducted for four core clock genes (Per1, Bmal1, Clock, Rev-erbα), and six out of these 11 cytotoxic regulation genes (Ly49C, Ly49I, Mapk1, Nkg2d, Shp-1, Pik3ca) in WT and mPer2 ?;?;?/ ?;?;? entrained in light/dark (LD) or dark/dark (DD) cycles. Consistently, circadian oscillations were observed for Per1, Rev-erbα, Ly49C, and Nkg2d in WT mice under LD and DD cycles. However, these rhythmic expressions were either disrupted or dampened in mPer2 ?;?;?/ ?;?;? mice. Comparison of gene expression between WT and mPer2 ?;?;?/ ?;?;? mice showed that mPer2 knockout had systematically downregulated the mRNA expression of two cytotoxicity regulators, Ly49C and Nkg2d. FACS analysis further confirmed that the circadian expression of these genes was not due to the daily difference in cell numbers of NK, NKT, or T cells in bone marrow. Taken together, our results reveal that mPer2 is a critical clock component in modulating circadian rhythms in bone marrow. Furthermore, it implies that Ly49C and Nkg2d are two clock-controlled genes that may play an important role in mediating mPer2-controlled cytotoxic response. (Author correspondence: )  相似文献   

18.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms. (Author correspondence: , )  相似文献   

19.
20.
The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4?days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24?h (p?<?0.05) for 49/61 temperature time series (80.3%), and 15/16 rest-activity patterns (93.7%) at baseline. However, individual circadian amplitudes varied from 0.04?°C to 2.86?°C for skin surface temperature (median, 0.72?°C), and from 16.6 to 146.1?acc/min for rest-activity (median, 88.9?acc/min). Thirty-nine pairs of baseline temperature and rest-activity time series (75%) were correlated (r?>?|0.7|; p?<?0.05). Individual circadian acrophases at baseline were scattered from 15:18 to 6:05 for skin surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25–75% quartiles, 22:35–3:07) and 14:12 (13:14–14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption of these biomarkers was found for the five other patients, as indicated by the lack of any statistically significant dominant period in the circadian range. No consistent correlation (r?<?|0.7|, p?≥?0.05) was found between paired rest-activity and temperature time series during fixed chronotherapy delivery. In conclusion, large inter-patient differences in circadian amplitudes and acrophases of skin surface temperature were demonstrated for the first time in cancer patients, despite rather similar rest-activity acrophases. The patient-dependent coupling between both CTS biomarkers, and its possible alteration on a fixed chronotherapy protocol, support the concept of personalized cancer chronotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号