首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过玉米种植田间试验,研究了玉米秸秆直接还田和炭化还田对旱地棕壤CO2排放及土壤碳库管理指数的影响。结果表明:与对照相比,秸秆直接还田和秸秆炭化还田均显著增加了土壤CO2的累积排放量,分别高于对照132%和76%;在同等化肥施用条件下,秸秆炭化还田比直接还田显著降低了土壤CO2的累积排放量,降幅为24%。与秸秆直接还田相比,生物炭的施入起到了良好的CO2减排效果。秸秆还田可以显著提升土壤碳库管理指数,与秸秆炭化还田相比,秸秆直接还田的效果更为显著。  相似文献   

2.
通过田间试验,采用静态箱-气相色谱法研究秸秆炭化还田和直接还田对棕壤旱田氧化亚氮(N2O)排放和相关土壤理化性质的影响。试验设单施化肥(对照CK)、化肥+玉米秸秆直接还田(CS)、化肥+玉米秸秆炭化还田(BC)3个处理,各处理均施用等量化肥。结果表明:(1)各处理土壤N2O排放量差异显著,表现为CKCSBC,BC和CS处理分别比CK降低38.9%和24.0%;(2)BC处理N2O排放强度显著降低,分别比CS和CK处理降低35.0%和39.2%,而CS与CK处理N2O排放强度差异不显著;(3)CS和BC处理均可显著降低土壤容重和氨氧化潜势,增加土壤p H、速效钾和有机碳含量;(4)相关分析结果表明,N2O排放量与土壤温度、土壤容重和氨氧化潜势均呈显著正相关,与土壤p H、硝态氮含量和土壤有机碳含量呈负相关。  相似文献   

3.
在洞庭湖区农田施用秸秆生物炭不仅能实现秸秆资源化利用,还可降低环境污染压力。本研究于2020年采用水稻盆栽试验,研究了不同南荻秸秆生物炭施用量对土壤氨挥发速率、累积氨挥发量、表面水pH值和NH4+-N浓度的影响。供试土壤为第四纪红土发育的红黄泥和花岗岩发育的麻砂泥水稻土,设置6个南荻秸秆生物炭添加处理,即分别以土柱0~20 cm土壤重量的0%、1%、2%、4%、6%和8%比例添加生物炭,每盆施用复合肥200 kg N·hm-2。结果表明: 施用生物炭导致两种土壤之间或不同生物炭处理之间的氨挥发速率和累积量均存在显著差异。麻砂泥施用生物炭处理在施肥后第2天出现氨挥发峰值,且较不施生物炭处理峰值降低了23.6%~53.4%;红黄泥氨挥发峰值出现在施肥后第7~13天,且其峰值随着生物炭添加量的增加而升高。整体上,麻砂泥土壤的氨挥发速率均高于红黄泥。麻砂泥土壤<4%生物炭添加量能抑制土壤氨挥发速率及累积量,其中以2%处理降幅最大(46.9%),但生物炭添加对水稻生长前期表面水pH值的影响不显著;红黄泥土壤随着南荻生物炭用量的增加,表面水中pH值和NH4+-N浓度增加,导致氨挥发速率及累积量增幅达1.3~10.5倍。回归分析显示,生物炭添加量是影响两种土壤氨挥发的关键因素。Elo-vich方程能较好地拟合两种土壤的氨挥发累积量随时间的变化动态,各施炭处理的相关系数均达极显著水平。总体上,对于偏中性的麻砂泥土壤,施用一定量的南荻生物炭对氨排放有一定的抑制作用,而对于酸性的红黄泥土壤,增施南荻生物炭会通过提高表面水的pH值和NH4+-N浓度促进氨挥发,因此针对不同类型土壤施用南荻秸秆生物炭应注意选择适宜用量,以降低氮素损失。  相似文献   

4.
控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响   总被引:3,自引:0,他引:3  
周文鳞  娄运生 《生态学报》2014,34(16):4555-4560
采用温室盆栽和静态箱-气相色谱法,研究了控释氮肥对抗除草剂转基因水稻和亲本常规水稻稻田土壤甲烷(CH4)排放的影响。供试土壤为潴育型水稻土,氮肥种类为尿素和控释氮肥。结果表明,与对照(尿素)相比,控释氮肥提高了水稻分蘖数、株高、生物量及产量。水稻品种对CH4季节性排放规律没有明显影响,CH4排放通量基本表现为,自水稻移栽后逐渐升高,移栽后62—92 d出现峰值,而后逐渐降低至水稻收获。与对照相比,控释氮肥可显著降低CH4排放通量和全生育期累积排放量。抗除草剂转基因水稻稻田土壤CH4排放通量和累积排放量均显著低于亲本常规水稻。研究认为,一次性基施控释氮肥和种植抗除草剂转基因水稻对有效减缓稻田甲烷排放具有重要意义。  相似文献   

5.
UV-B辐射增强对抗除草剂转基因水稻 CH4排放的影响   总被引:2,自引:0,他引:2  
娄运生  周文鳞 《生态学报》2012,32(15):4731-4736
在大田条件下,研究了UV-B(ultraviolet-B)辐射增强对抗除草剂转基因水稻及亲本常规水稻甲烷(CH4)排放的影响。UV-B辐射设2水平,即对照(CK,自然光),增强(Elevated,14.4 kJ·m-·2d-1),相当于南京地区大气臭氧耗损25%的辐射剂量。结果表明,UV-B辐射增强并没有改变稻田CH4排放通量的季节性变化规律。与对照相比,UV-B辐射增强显著提高CH4排放通量和累积排放量。水稻分蘖期CH4累积排放量最高,占全生育累积排放量的51.55%—61.01%;其次是拔节至孕穗期,占20.00%—26.64%。抗除草剂转基因水稻的CH4排放通量和累积排放量显著低于亲本常规水稻。研究说明,UV-B辐射增强下种植抗除草剂转基因水稻对于减缓稻田甲烷排放有积极意义。  相似文献   

6.
施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响   总被引:6,自引:0,他引:6  
刘杏认  张星  张晴雯  李贵春  张庆忠 《生态学报》2017,37(20):6700-6711
以华北农田冬小麦-夏玉米轮作体系连续6a施用生物炭和秸秆还田的土壤为研究对象,于2013年10月—2014年9月,采用静态暗箱-气相色谱法,对CO_2、N_2O通量进行了整个轮作周期的连续观测,探究施用生物炭与秸秆还田对其排放通量的影响。试验共设4个处理:CK(对照)、C1(低量生物炭4.5 t hm~(-2)a~(-1))、C2(高量生物炭9.0 t hm~(-2)a~(-1))和SR(秸秆还田straw return)。结果表明:在整个轮作周期内,各处理CO_2、N_2O通量随时间的变化趋势基本一致。随着生物炭施用量的增加,CO_2排放通量分别增加了0.3%—90.3%(C1)、1.0%—334.2%(C2)和0.4%—156.3%(SR)。其中,C2处理对CO_2累积排放量影响最大,增幅为42.9%。对N_2O而言,C2处理显著降低了N_2O累积排放量,但增加了CO_2和N_2O排放的综合增温潜势,C1和SR处理对N_2O累积排放量及综合增温潜势均没有显著影响。相关分析表明,土壤温度和土壤含水量是影响CO_2通量最主要的因素,两者之间呈极显著的正相关关系;N_2O通量与土壤温度、土壤含水量、NO_3~--N和NH_4~+-N均表现出极显著的正相关关系,而与土壤p H值表现出极显著的负相关关系。由此可见,添加生物炭对于减少氮素的气体损失具有较大的潜力。  相似文献   

7.
生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响   总被引:9,自引:0,他引:9  
高德才  张蕾  刘强  荣湘民  张玉平  田昌 《生态学报》2015,35(11):3615-3624
采用土柱室内模拟的方法,通过添加0%、0.5%、2%、4%、6%、8%生物黑炭于土壤中,测定土壤CO2、CH4、N2O排放通量,探讨生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响。结果表明:室内模拟土柱培养期内,施用生物黑炭能显著增加CO2排放,且生物黑炭添加百分数(x)与CO2累积排放量(y)之间满足线性方程:y=12.591x+235.02(R2=0.834,n=24);当生物黑炭添加量达到2%及以上时,基本抑制了CH4的排放和显著减少土壤N2O排放,并显著减少CH4和N2O的综合温室效应,当其达到4%以上时,CH4和N2O的综合温室效应降幅更大并趋于稳定,但施用少量生物黑炭(0.5%)可显著促进N2O排放,对减少CH4和N2O综合温室效应并无明显效果。生物黑炭表观分解率随其添加量的增加逐渐减少,生物黑炭添加比例越高,积累于土壤中的碳越多,从投入生物黑炭量与固碳量和减排比角度综合考虑,农业生产中推荐生物黑炭施用量为20 t/hm2,其固碳减排效果俱佳。  相似文献   

8.
通过恒温培养试验,研究了不同类型秸秆还田后的土壤CO2排放特征及其与秸秆C、N含量的关系,以明晰黑土区不同类型秸秆还田后的分解特征,探明还田秸秆的C、N含量对固碳效果的影响.结果表明: 在61 d的培养试验中,土壤CO2排放速率随时间呈现出“下降 稳定 增大(出现‘较高值’) 下降”的过程.不同类型秸秆还田后土壤CO2排放速率随时间变化的特征存在明显差异,主要体现在“较高值”出现和持续的时间不同.秸秆类型对土壤CO2累积排放量具有显著影响,前21 d和前61 d的土壤CO2累积排放量对秸秆添加的响应不同.在前21 d,玉米根、玉米茎下部、玉米叶、大豆叶的CO2累积排放量(约160 μmol·g-1)显著大于其他秸秆;而除大豆叶外,大豆秸秆61 d的CO2累积排放量均比玉米秸秆大.前21 d CO2累积排放量与秸秆含碳量的比值(CR)和秸秆的C/N、含氮量之间均呈显著的线性相关;而61 d的CO2累积排放量与秸秆的C、N含量之间不存在线性关系.综上,在还田条件下,秸秆类型对土壤CO2的排放有明显影响;大豆秸秆比玉米秸秆容易分解,但与长时间分解不同,大豆秸秆还田最初阶段的分解速率小于玉米秸秆;秸秆的C/N、含氮量只对还田最初阶段的土壤CO2排放有较大影响.  相似文献   

9.
DCD不同施用时间对水稻生长期CH4和N2O排放的影响   总被引:4,自引:0,他引:4  
李香兰  马静  徐华  曹金留  蔡祖聪  K.Yagi 《生态学报》2008,28(8):3675-3681
硝化抑制剂传统的施用方法是在作物移栽或播种前与基肥配合施用.通过温室盆栽试验研究相同施肥条件下,硝化抑制剂双氢胺(dicyandiamide, DCD)不同施用时间(与基肥混施、分孽肥后施入、穗肥后施入)对水稻生长期CH4和N2O排放的影响.结果表明,施入DCD能同时降低CH4和N2O排放量.就整个水稻生长期而言,与基肥混施DCD分别降低21.41%的CH4排放量和8.00%的N2O排放量;调节DCD施用时间至分孽肥后显著降低30.30%的N2O排放量,同时降低5.24%的CH4排放量.就施入DCD到水稻收获的特定生长阶段而言,缓施DCD分别降低32.65%的N2O排放量和11.18%的CH4排放量;晚施DCD对CH4和N2O排放的影响不大.CK、早施DCD、缓施DCD及晚施DCD处理CH4平均排放通量分别为0.95、0.75、0.87 mg/(m2 · h)及0.94 mg/(m2 · h),N2O平均排放通量为155.67、143.24、108.50 μg/(m2 · h)及153.24 μg/(m2 · h),缓施DCD显著降低CH4和N2O排放量(p<0.01).土壤温度是影响N2O排放的主要因素,而CH4排放通量与土壤Eh呈显著负相关(p<0.01).  相似文献   

10.
通过恒温培养试验,研究了不同类型秸秆还田后的土壤CO2排放特征及其与秸秆C、N含量的关系,以明晰黑土区不同类型秸秆还田后的分解特征,探明还田秸秆的C、N含量对固碳效果的影响.结果表明: 在61 d的培养试验中,土壤CO2排放速率随时间呈现出“下降 稳定 增大(出现‘较高值’) 下降”的过程.不同类型秸秆还田后土壤CO2排放速率随时间变化的特征存在明显差异,主要体现在“较高值”出现和持续的时间不同.秸秆类型对土壤CO2累积排放量具有显著影响,前21 d和前61 d的土壤CO2累积排放量对秸秆添加的响应不同.在前21 d,玉米根、玉米茎下部、玉米叶、大豆叶的CO2累积排放量(约160 μmol·g-1)显著大于其他秸秆;而除大豆叶外,大豆秸秆61 d的CO2累积排放量均比玉米秸秆大.前21 d CO2累积排放量与秸秆含碳量的比值(CR)和秸秆的C/N、含氮量之间均呈显著的线性相关;而61 d的CO2累积排放量与秸秆的C、N含量之间不存在线性关系.综上,在还田条件下,秸秆类型对土壤CO2的排放有明显影响;大豆秸秆比玉米秸秆容易分解,但与长时间分解不同,大豆秸秆还田最初阶段的分解速率小于玉米秸秆;秸秆的C/N、含氮量只对还田最初阶段的土壤CO2排放有较大影响.  相似文献   

11.
Biochar has received considerable scientific attention in the past decade as a possible method for carbon storage and increasing agricultural yields. Despite this promise, however, economic assessments of biochar are yet to definitively establish the value of the technology, primarily due to discrepancy between observed short-term agronomic benefits and expectations of biochar as a lasting soil improver. This study investigated the economic value of biochar as an agricultural technology for long-term improvement of arable farming. From presently available field trial data, the costs and benefits of using biochar technology to enhance cereals agriculture were evaluated in two generalized geo-economic agricultural scenarios: North-Western Europe (NWE) and Sub-Saharan Africa (SSA). Cost models were developed to estimate the total cost of biochar from initial biomass feedstock acquisition to final soil application for each agricultural setting. Benefits of biochar application were estimated by statistical meta-analysis of crop yield data from published biochar field trials to find the increase in cereal grain yield attributable to biochar application for both NWE (+0.07 to +0.28 t ha−1 yr−1) and SSA (+0.18 to +1.00 t ha−1 yr−1). The grain yield improvement from a one-time biochar application was assumed to persist without decay for an independently varying time period, and the increase in grain production then monetised using projected future commodity prices. The Net Present Value (NPV) of applying biochar was then calculated by setting present total costs against present total benefits as a function of biochar performance longevity. Biochar application was found to carry a positive NPV for cereal cropping in SSA in several scenarios where the duration of the biochar yield effect was assumed to extend 30 years into the future. Conversely, NWE biochar scenarios were all found to have negative NPVs even when the benefits time span was indefinitely stretched.  相似文献   

12.
The characterization of biochar has been predominantly focused around determining physicochemical properties including chemical composition, porosity and volatile content. To date, little systematic research has been done into assessing the properties of biochar that directly relate to its function in soil and how production conditions could impact these. The aim of this study was to evaluate how pyrolysis conditions can influence biochar's potential for soil enhancing benefits by addressing key soil constraints, and identify potential synergies and restrictions. To do this, biochar produced from pine wood chips (PC), wheat straw (WS) and wheat straw pellets (WSP) at four highest treatment temperatures (HTT) (350, 450, 550 and 650 °C) and two heating rates (5 and 100 °C min?1) were analysed for pH, extractable nutrients, cation exchange capacity (CEC), stable‐C content and labile‐C content. Highest treatment temperature and feedstock selection played an important role in the development of biochar functional properties while overall heating rate (in the range investigated) was found to have no significant effect on pH, stable‐C or labile‐C concentrations. Increasing the HTT reduced biochar yield and labile‐C content while increasing the yield of stable‐C present within biochar. Biochar produced at higher HTT also demonstrated a higher degree of alkalinity improving biochar's ability to increase soil pH. The concentration of extractable nutrients was mainly affected by feedstock selection while the biochar CEC was influenced by HTT, generally reaching its highest values between 450–550 °C. Biochar produced at ≥550 °C showed high combined values for C stability, pH and CEC while lower HTTs favoured nutrient availability. Therefore attempts to maximize biochar's C sequestration potential could reduce the availability of biochar nutrients. Developing our understanding of how feedstock selection and processing conditions influence key biochar properties can be used to refine the pyrolysis process and design of ‘bespoke biochar’ engineered to deliver specific environmental functions.  相似文献   

13.
Significant evidence has accumulated demonstrating that soil biochar amendment has many environmental benefits; however, adoption has been slow. This raises the question of how to align the environmental benefits with commercial motivations to drive more widespread implementation. Here, we examine the role that government policy can play in accelerating production and use at commercial scale. We identify three types of programs that can support biochar production: commercial financial incentives, nonfinancial policy support, and research and development funding. We also describe how these programs are currently used to support biochar production. For example, financial incentives can motivate immediate changes in business practices while nonfinancial policies can be important mechanisms to educate consumers and expand market demand. Research and development support can provide the necessary funding for early‐stage innovations that may one day become commercially viable options, even without other types of policy support. There are different risk–reward profiles for each policy mechanism, and these must be considered when evaluating a policy direction. Finally, we offer broad recommendations to the development of policy that maximizes the net benefits of biochar adoption. Key recommendations include improving policies that allow for the monetization of environmental benefits and avoided costs, recognizing soil as a resource through national preservation policy, and developing a broadly accepted set of product standards for biochar.  相似文献   

14.
Biochar is a promising amendment to promote cadmium (Cd) sorption and fixation in agricultural soil, where microplastics are emerging contaminants in soil. Herein, a greenhouse pot experiment was conducted to elucidate the effects on Cd availability in a soil–plant system by biochar and fresh/aged microplastics application. The fresh microplastics led to an obvious increase in soil Cd availability and Cd uptake by wheat plant, while the aged microplastics increased the available Cd in soil but had no effect on Cd uptake by wheat plant, which was likely attributed to the blocking effect of the aged microplastics on Cd transportation from the soil to the wheat plant. Unexpectedly, biochar had increased Cd availability and Cd uptake. The increased soil soluble Cd was because of both decreased soil pH and elevated dissolved organic matter (DOM) content resulted by biochar addition. Also, the unchanged Cd adsorption of the soil was likely responsible for the increased tested soil Cd availability. In addition, the combined effects of a greater decrease in soil pH, an increase in soil DOM content, and a reduction in Cd adsorption after the addition of microplastics to biochar-amended soil resulted in a significant increase (ranging from 2.63% to 47.73%) in Cd availability compared to soil treated with biochar alone. Moreover, fresh microplastics inhibited wheat growth, and greater inhibition effect was observed for their aged ones. The biochar elevated the wheat biomass; however, the coexistence of microplastics and biochar decreased the wheat plant biomass compared with biochar alone, due to the negative influence of microplastics in plant growth.  相似文献   

15.
Biochars converted from agricultural residuals can effectively remove ammonium from water. This work further improved the sorption ability of biochars to aqueous ammonium through alkali modification. Three modified biochars were prepared from agricultural residuals pre-treated with NaOH solution through low-temperature (300 °C) slow pyrolysis. The modified biochars effectively removed ammonium ions from water under various conditions with relatively fast adsorption kinetics (reached equilibrium within 10 h) and extremely high adsorption capacity (>200 mg/g). The Langmuir maximum capacity of the three modified biochars were between 313.9 and 518.9 mg/g, higher than many other ammonium adsorbents. Although the sorption of ammonium onto the modified biochar was affected by pH and temperature, it was high under all of the tested conditions. Findings from this work indicated that alkali-modified biochars can be used as an alternative adsorbent for the removal of ammonium from wastewater.  相似文献   

16.
Biochar can be used as an adsorbent for phosphate removal in aquatic environments to treat eutrophication problems. Designing biochars that have large phosphate adsorption capacity through altering pyrolysis conditions and applying activation techniques will improve phosphate removal efficiency. In this study, four pine sawdust biochars were produced at 300 and 550 °C with and without steam activation. Batch sorption experiments including isotherm and kinetic studies were conducted to understand how phosphate removal capabilities and adsorption mechanisms of biochars were affected by pyrolysis temperature and steam activation. Our results showed that the steam activation and pyrolysis temperature did not affect phosphate adsorption by the biochars. The four biochars removed <4% of phosphate from the aqueous solution, which were not affected by the pH of the solution and biochar application rate. The repulsion forces between biochar surfaces and phosphate ions were likely the cause of the low adsorption.  相似文献   

17.
This study was conducted to evaluate and compare the effectiveness of two organic amendments [poultry manure (PM) and poultry manure biochar (PMB)] for the degradation of petroleum hydrocarbons in contaminated soils by barley plant at three levels of total petroleum hydrocarbons (TPHs) during 5 months under greenhouse conditions. TPHs removal efficiency and microbial respiration were shown to be higher at soil-cultivated plant than at uncultivated soil and in lowest level of contamination rather than other levels of contamination and at organic amendment treatment than unamended soil. Soil microbial respiration and TPHs degradation in the rhizosphere of barley increased by 15.64 and 12.74% for PM-amended treatment and 28.07 and 26.83% for PMB-amended treatment, respectively, in the 4% TPHs level compared with unamended treatment. Comparison of two amendments showed that in PMB treatment soil, highest dry weight, microbial respiration, and TPHs degradation potential were observed.  相似文献   

18.
The biochar is an important carbon-rich product that is generated from biomass sources through pyrolysis. Biochar (charcoal) can be both used directly as a potential source of solid biofuels and as soil amendments for barren lands. The aim of this study was investigate influence of pyrolysis temperature on the physicochemical properties and structure of biochar. The biochars were produced by pyrolysis of rapeseed (Brassica napus L.) using a fixed-bed reactor at different pyrolysis temperatures (400–700°C). The produced biochars were characterized by proximate and elemental analysis, Brunauer–Emmett–Teller (BET) surface area, particle size distributions, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy. The results showed that both chemical and surface properties of the biochars were significantly affected by the pyrolysis temperature. Aromatic hydrocarbons, hydroxyl and carbonyl compounds were the majority components of the biochar. The biochar obtained at 700°C had a high fixed carbon content (66.16%) as well as a high heating value, and therefore it could be used as solid fuel, precursor in the activated carbons manufacture (specific surface area until 25.38 m2 g?1), or to obtain category-A briquettes.  相似文献   

19.
生物炭影响作物生长及其与化肥混施的增效机制研究进展   总被引:3,自引:0,他引:3  
利用秸秆型生物炭进行还田改土不仅具有提升作物产量的潜力,而且能够产生明显的环境效益,现已成为当今国内外农业领域的研究热点.本文综述了近年来国内外有关生物炭添加影响作物生长的分子调控机制研究,尤其关注了生物炭与作物根系的互作效应;介绍了生物炭与化肥混施的生物学效应及可能的增效机制;展望了今后的研究方向,以期促进我国相关领域的研究.国内外的最新研究表明:生物炭土壤添加改善植物生长的关键是生长素相关信号转导分子,通过促进植物细胞扩增、细胞壁松弛、水及营养的转运等相关基因的表达,有利于植物的新陈代谢及生长.生物炭及其与根系的相互作用能够直接或间接地影响土壤物理、化学、生物因子,从而在炭、肥互作增效过程中起主导调控作用.  相似文献   

20.
生物质炭生物与非生物氧化特性研究进展   总被引:4,自引:0,他引:4  
伍孟雄  杨敏  孙雪  吴伟祥 《生态学报》2015,35(9):2810-2818
生物质炭是由植物生物质热解炭化产生的一类高度芳香化难熔性固态物质。生物质热解炭化还田能否成为人类应对全球气候变化的重要途径直接取决于其在土壤生态系统中的稳定性。生物质炭稳定性的研究对科学计算和评估土壤生态系统生物质炭输入的碳固持与减排作用具有重要现实意义。重点概述了土壤生态系统生物质炭生物与非生物氧化特性、影响因素及其机理研究进展,并对生物质炭在土壤环境中的稳定性预测模型研究进行了分析。在此基础上,今后需针对不同类型旱地土壤生态系统和不同类型稻田土壤生态系统生物质炭稳定性及其机理开展研究,并进一步开展土壤生态系统生物质炭稳定性预测模型研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号