首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
ATP-dependent proteases from three families have been identified experimentally in Arabidopsis mitochondria: four FtsH proteases (AtFtsH3, AtFtsH4, AtFtsH10, and AtFtsH11), two Lon proteases (AtLon1 and AtLon4), and one Clp protease (AtClpP2 with regulatory subunit AtClpX). In this review we discuss their submitochondrial localization, expression profiles and proposed functions, with special emphasis on their impact on plant growth and development. The best characterized plant mitochondrial ATP-dependent proteases are AtLon1 and AtFtsH4. It has been proposed that AtLon1 is necessary for proper mitochondrial biogenesis during seedling establishment, whereas AtFtsH4 is involved in maintaining mitochondrial homeostasis late in rosette development under short-day photoperiod.  相似文献   

2.
The existence of a proteolytic system which can specifically recognize and cleave proteins in mitochondria is now well established. The components of this system comprise processing peptidases, ATP-dependent peptidases and oligopeptidases. A short overview of experimentally confirmed proteases mainly from Arabidopsis thaliana is provided. The role of the mitochondrial peptidases in plant growth and development is emphasized. We also discuss the possibility of existence of as yet unidentified plant homologs of yeast mitochondrial ATP-independent proteases.  相似文献   

3.
Arabidopsis thaliana proteome contains 667 proteases; some tens of them are chloroplast-targeted proteins, encoded by genes orthologous to the ones coding for bacterial proteolytic enzymes. It is thought that chloroplast proteases are involved in chloroplasts' proteins turnover and quality control (maturation of nucleus-encoded proteins and removal of nonfunctional ones). Some ATP-dependent chloroplast proteases belonging to FtsH family (especially FtsH2 and FtsH5) are considered to be involved in numerous aspects of chloroplast and whole plant maintenance under non-stressing as well as stressing conditions. This notion is supported by severe phenotype appearance of mutants deficient in these proteases. In contrast to seemingly high physiological importance of chloroplast members of FtsH protease family, only a few individual proteins have been identified so far as their physiological targets (i.e. Lhcb1, Lhcb3, PsbA and Rieske protein). Our knowledge regarding structure and molecular mechanisms of these enzymes' action is limited when compared with what is known about FtsHs of bacterial origin. Equally limited is the knowledge about ATP-dependent Lon4 protease being the single known chloroplast-targeted ortholog of Lon protease of Escherichia coli.  相似文献   

4.
The biogenesis of mitochondria and the maintenance of mitochondrial functions depends on an autonomous proteolytic system in the organelle which is highly conserved throughout evolution. Components of this system include processing peptidases and ATP-dependent proteases, as well as molecular chaperone proteins and protein complexes with apparently regulatory functions. While processing peptidases mediate maturation of nuclear-encoded mitochondrial preproteins, quality control within various subcompartments of mitochondria is ensured by ATP-dependent proteases which selectively remove non-assembled or misfolded polypeptides. Moreover; these proteases appear to control the activity- or steady-state levels of specific regulatory proteins and thereby ensure mitochondrial genome integrity, gene expression and protein assembly.  相似文献   

5.
6.
7.
Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction.  相似文献   

8.
9.
Adam Z 《Biochimie》2000,82(6-7):647-654
A wide range of proteolytic processes in the chloroplast are well recognized. These include processing of precursor proteins, removal of oxidatively damaged proteins, degradation of proteins missing their prosthetic groups or their partner subunit in a protein complex, and adjustment of the quantity of certain chloroplast proteins in response to changing environmental conditions. To date, several chloroplast proteases have been identified and cloned. The chloroplast processing enzyme is responsible for removing the transit peptides of newly imported proteins. The thylakoid processing peptidase removes the thylakoid-transfer domain from proteins translocated into the thylakoid lumen. Within the lumen, Tsp removes the carboxy-terminal tail of the precursor of the PSII D1 protein. In contrast to these processing peptidases which perform a single endo-proteolytic cut, processive proteases that can completely degrade substrate proteins also exist in chloroplasts. The serine ATP-dependent Clp protease, composed of the proteolytic subunit ClpP and the regulatory subunit ClpC, is located in the stroma, and is involved in the degradation of abnormal soluble and membrane-bound proteins. The ATP-dependent metalloprotease FtsH is bound to the thylakoid membrane, facing the stroma. It degrades unassembled proteins and is involved in the degradation of the D1 protein of PSII following photoinhibition. DegP is a serine protease bound to the lumenal side of the thylakoid membrane that might be involved in the chloroplast response to heat. All these peptidases and proteases are homologues of known bacterial enzymes. Since ATP-dependent bacterial proteases and their mitochondrial homologues are also involved in the regulation of gene expression, via their determining the levels of key regulatory proteins, chloroplast proteases are expected to play a similar role.  相似文献   

10.
Cell survival depends on essential processes in mitochondria. Various proteases within these organelles regulate mitochondrial biogenesis and ensure the complete degradation of excess or damaged proteins. Many of these proteases are highly conserved and ubiquitous in eukaryotic cells. They can be assigned to three functional classes: processing peptidases, which cleave off mitochondrial targeting sequences of nuclearly encoded proteins and process mitochondrial proteins with regulatory functions; ATP-dependent proteases, which either act as processing peptidases with regulatory functions or as quality-control enzymes degrading non-native polypeptides to peptides; and oligopeptidases, which degrade these peptides and mitochondrial targeting sequences to amino acids. Disturbances of protein degradation within mitochondria cause severe phenotypes in various organisms and can lead to the induction of apoptotic programmes and cell-specific neurodegeneration in mammals. After an overview of the proteolytic system of mitochondria, we will focus on versatile functions of ATP-dependent AAA proteases in the inner membrane. These conserved proteolytic machines conduct protein quality surveillance of mitochondrial inner membrane proteins, mediate vectorial protein dislocation from membranes, and, acting as processing enzymes, control ribosome assembly, mitochondrial protein synthesis, and mitochondrial fusion. Implications of these functions for cell-specific axonal degeneration in hereditary spastic paraplegia will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号