首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

2.
Exopolysaccharides (EPS) of nodulating strains of Rhizobium trifolii and Rhizobium leguminosarum added to red clover seedlings before inoculation reduced the number of nodules. The inhibition of the nodulation was correlated with the amount of EPS. The preparations of EPS from mutants defective in early stages of nodulation (Roa- or Hac-) did not affect the nodulation, whereas EPS from mutants deficient in late stages (post Hac-) exerted an inhibitory effect.Inactive preparation of EPS contained less O-acetyl groups and pyruvic acid residues. Deacetylation and depyruvylation of EPS from R. trifolii Nod+ abolished it inhibitory effect. It was concluded that noncarbohydrate substitutions (acetate, pyruvate) are involved in EPS effect.Abbreviations CPS capsular polysaccharide - EPS exopolysaccharide - LPS lipopolysaccharide - Nod nodulation - Fix nitrogen fixation - Hac root hairs curling - Roa root adhesion  相似文献   

3.
Summary Three distinct loci (designated regions III, IV and V) were identified in the 14 kb Nod region of Rhizobium trifolii strain ANU843 and were found to determine the host range characteristics of this strain. Deletion of region III or region V only from the 14 kb Nod region affected clover nodulation capacity. The introduction to R. Leguminosarum of DNA fragments on multicopy vectors carrying regions III, IV and V (but not smaller fragments) extended the host range of R. leguminosarum so that infection threads and nodules occurred on white clover plants. The same DNA fragments were introduced to the Sym plasmid-cured strain (ANU845) carrying the R. meliloti recombinant nodulation plasmid pRmSL26. Plasmid pRmSL26 alone does not confer root hair curling or nodulation on clover plants. However, the introduction to ANU845 (pRmSL26) of a 1.4 kb fragment carrying R. trifolii region IV only, resulted in the phenotypic activation of marked root hair curling ability to this strain on clovers but no infection events or nodules resulted. Only the transfer of regions III, IV and V to strain ANU845 (pRmSL26) conferred normal nodulation and host range ability of the original wild type R. trifolii strain. These results indicate that the host range genes determine the outcome of early plant-bacterial interactions primarily at the stage of root hair curling and infection.  相似文献   

4.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

5.
The taxonomic status of the Rhizobium sp. K3.22 clover nodule isolate was studied by multilocus sequence analysis (MLSA) of 16S rRNA and six housekeeping chromosomal genes, as well as by a subsequent phylogenic analysis. The results revealed full congruence with the Rhizobium pisi DSM 30132T core genes, thus supporting the same taxonomic position for both strains. However, the K3.22 plasmid symbiosis nod genes demonstrated high sequence similarity to Rhizobium leguminosarum sv. trifolii, whereas the R. pisi DSM 30132Tnod genes were most similar to R. leguminosarum sv. viciae. The strains differed in the host range nodulation specificity, since strain K3.22 effectively nodulated red and white clover but not vetch, in contrast to R. pisi DSM 30132T, which effectively nodulated vetch but was not able to nodulate clover. Both strains had the ability to form nodules on pea and bean but they differed in bean cultivar specificity. The R. pisi K3.22 and DSM 30132T strains might provide evidence for the transfer of R. leguminosarum sv. trifolii and sv. viciae symbiotic plasmids occurring in natural soil populations.  相似文献   

6.
Rhizobium-Azospirillum interactions during establishment of Rhizobium-clover symbiosis were studied. When mixed cultures of Azospirillum and Rhizobium trifolii strains were simultaneously inoculated onto clover plants, no nodulation by R. trifolii was observed. R. trifolii ANU1030, which nodulated clover plants without attacking root hairs, i.e., does not cause root hair curling (Hac), did not show inhibition of nodulation when inoculated together with Azospirillum strains. Isolation of bacteria from surface-sterilized roots showed that azospirilla could be isolated both from within root segments and from nodules. Inhibition of nodulation could be mimicked by the addition of auxins to the plant growth medium.  相似文献   

7.
Receptor Site on Clover and Alfalfa Roots for Rhizobium   总被引:17,自引:4,他引:13       下载免费PDF全文
Sites on white clover and alfalfa roots that bind Rhizobium trifolii and R. meliloti capsular polysaccharides, respectively, were examined by fluorescence microscopy. Fluorescein isothiocyanate-labeled capsular material from R. trifolii bound specifically to root hairs of clover but not alfalfa. Binding was most intense at the root hair tips. Treatment of clover roots with 2-deoxyglucose (2-dG) prevented binding of R. trifolii capsular material to the roots. The sugar 2-dG enhanced the elution of clover root protein, which could bind to and specifically agglutinate R. trifolii but not R. meliloti or R. japonicum. The mild elution procedure left the roots intact. Agglutination of R. trifolii and passive hemagglutination of rabbit erythrocytes coated with the capsular material of R. trifolii were specifically inhibited by 2-dG. These results suggest that clover roots contain proteins that cross-link complementary polysaccharides on the surface of clover root hairs and infective R. trifolii through 2-dG-sensitive binding sites. Alfalfa root hairs were shown to specifically bind to a surface polysaccharide from R. meliloti.  相似文献   

8.
Observations by scanning electron microscopy revealed that rhizobiaattach to the surface of rice protoplasts with regenerated cellwalls, isolated mesophyll cells of asparagus, and root hairsof rice and oat seedlings. Those strains of rhizobia, namelyRhizobium leguminosarum biovar trifolii, Bradyrhizobium japonicumand Bradyrhizobium sp., attach to the cells of these monocotsin the same manner as they attach to the host dicots tested.Escherichia coli did not attach. These results suggest thatthe attachment of rhizobia is not a host-specific process. Whenoat seedlings were infected by R. l. trifolii, hair curlingwas observed. The interactions between monocot plants and rhizobiais discussed in this paper. (Received June 12, 1989; Accepted November 9, 1989)  相似文献   

9.
A plasmid of 150 Mdal from Rhizobium leguminosarum RCC1001 was found to be a Sym plasmid (pSym1) carrying genes for root nodulation and nitrogen fixation on plants of the pea vetch cross-inoculation group. The plasmid was expressed not only in different R. leguminosarum and R. trifolii hosts, but also in Agrobacterium tumefaciens and R. meliloti, although in root nodules induced by A. tumefaciens and R. meliloti hosts no nitrogen was fixed. The host range for root nodule induction appeared to be determined by pSym1 and only included plants of the pea vetch cross-inoculation group; in contrast, the host range for the induction of root hair deformations, which was found also to be determined by pSym1 was less restricted and included besides plants of the pea vetch group in addition plants of the clover group. This corroborates previous findings that host specificity for nodulation and nitrogen fixation is exerted at a stage after the induction of root hair deformations.  相似文献   

10.
Summary The infection of white clover seedlings byRhizobium strains with different host range properties was assessed using various microscopic techniques. Several wild-type andRhizobium leguminosarum biovarvicias hybrid strains containing definedR. l. bv.trifolii host range genes were used. The morphological changes in the root tissue of uninoculated and rhizobia inoculated white clovers were identified and compared. In particular, changes were observed in the induction of inner cortical cell division, alterations to nodule development and lateral root formation. The responses of the infected roots and the types of structures formed support the hypothesis that lateral roots and nodules may be physiologically homologous structures. To establish a normal pattern of nodulation on white clover roots, both sets of known host specific nodulation genes (operonsnod FERL andnod MNX) ofR. l. bv.trifolii were required. However, some nodule development occurred when only thenod FERL genes were present in the hybrid strain.  相似文献   

11.
Axenic seedling bioassays were performed on white clover, vetch, and alfalfa to assess the variety and dose responses of biological activities exhibited by membrane chitolipooligosaccharides (CLOSs) from wild type Rhizobium leguminosarum bv. trifolii ANU843. Subnanomolar concentrations of CLOSs induced deformation of root hairs (Had) and increased the number of foci of cortical cell divisions (Ccd) in white clover, some of which developed into nodule meristems. In contrast, ANU843 CLOSs were unable to induce Had in alfalfa and required a 104-fold higher threshold concentration to induce this response in vetch. Also, ANU843 CLOSs were not mitogenic on either of these non-host legumes. In addition, CLOS action also increased chitinase activity in white clover root exudate. Thus, the membrane CLOSs from wild type R. leguminosarum bv. trifolii are fully capable of eliciting various symbiosis-related responses in white clover in the same concentration range as extracellular CLOSs of other rhizobia on their respective legume hosts. These results and our earlier studies indicate that membrane CLOSs represent one of many different classes of bioactive metabolites made by R. leguminosarum bv. trifolii which elicit more intense symbiosis-related responses in white clover than in other legumes. Therefore, CLOSs evidently play an important role in symbiotic development, but they may not be the sole determinant of host-range in the Rhizobium-clover symbiosis.Abbreviations Ccd cortical cell division - CLOS chitolipooligosaccharide - Had root hair deformation  相似文献   

12.
Legume lectin stimulates infection of roots in the symbiosis between leguminous plants and bacteria of the genus Rhizobium. Introduction of the Pisum sativum lectin gene (psl) into white clover hairy roots enables heterologous infection and nodulation by the pea symbiont R. leguminosarum biovar viciae (R.l. viciae). Legume lectins contain a specific sugar-binding site. Here, we show that inoculation of white clover hairy roots co-transformed with a psl mutant encoding a non-sugar-binding lectin (PSL N125D) with R.l. viciae yielded only background pseudo-nodule formation, in contrast to the situation after transformation with wild type psl or with a psl mutant encoding sugar-binding PSL (PSL A126V). For every construct tested, nodulation by the homologous symbiont R.l. trifolii was normal. These results strongly suggest that (1) sugar-binding activity of PSL is necessary for infection of white clover hairy roots by R.l. viciae, and (2) the rhizobial ligand of host lectin is a sugar residue rather than a lipid.  相似文献   

13.
Nineteen strains of root nodule bacteria were grown under various iron regimes (0.1, 1.0 and 20 M added iron) and tested for catechol and hydroxamate siderophore production and the excretion of malate and citrate. The growth response of the strains to iron differed markedly. For 12 strains (Bradyrhizobium strains NC92B and 32H1, B. japonicum USDA110 and CB1809, B. lupini WU8, cowpea Rhizobium NGR234, Rhizobium meliloti strains U45 and CC169, Rhizobium leguminosarum bv viciae WU235 and Rhizobium leguminosarum bv trifolii strains TA1, T1 and WU95) the mean generation time showed no variation with the 200-fold increase in iron concentration. In contrast, in Bradyrhizobium strains NC921, CB756 and TAL1000, B. japonicum strain 61A76 and R. leguminosarum bv viciae MNF300 there was a 2–5 fold decrease in growth rate at low iron. R. meliloti strains WSM419 and WSM540 showed decreased growth at high iron.All strains of root nodule bacteria tested gave a positive CAS (chrome azurol S) assay for siderophore production. No catechol-type siderophores were found in any strain, and only R. leguminosarum bv trifolii T1 and bv viciae WU235 produced hydroxamate under low iron (0.1 and 1.0 M added iron).Malate was excreted by all strains grown under all iron regimes. Citrate was excreted by B. japonicum USDA110 and B. lupini WU8 in all iron concentrations, while Bradyrhizobium TAL1000, R. leguminosarum bv viciae MNF300 and B. japonicum 61A76 only produced citrate under low iron (0.1 and/or 1.0 M added iron) during the stationary phase of growth.Abbreviations CAS chrome azurol S - HDTMA hexadecyltrime-thylammonium bromide  相似文献   

14.
15.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

16.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

17.
Flavonoids released by roots of Vicia sativa subsp. nigra (V. sativa) activate nodulation genes of the homologous bacterium Rhizobium leguminosarum biovar viciae (R. l. viciae). Inoculation of V. sativa roots with infective R. l. viciae bacteria largely increases the nod gene-inducing ability of V. sativa root exudate (A.A.N. van Brussel et al., J Bact 172: 5394–5401). The present study showed that, in contrast to sterile roots and roots inoculated with R. l. viciae cured of its Sym plasmid, roots inoculated with R. l. viciae harboring its Sym plasmid released additional nod gene-inducing flavonoids. Using 1H-NMR, the structures of the major inducers released by inoculated roots, 6 flavanones and 2 chalcones, were elucidated. Roots extracts of (un)inoculated V. sativa contain 4 major non-inducing, most likely glycosylated, flavonoids. Therefore, the released flavonoids may either derive from the root flavonoids or inoculation with R. l. viciae activates de novo flavonoid biosynthesis.  相似文献   

18.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

19.
Rhizobium leguminosarum bv. trifolii T24 is ineffective in symbiotic nitrogen fixation, produces a potent antibiotic (referred to here as trifolitoxin) that is bacteriostatic to certain Rhizobium strains, and is very competitive for clover root nodulation (EA Schwinghamer, RP Belkengren 1968 Arch Mikrobiol 64: 130-145). The primary objective of this work was to demonstrate the roles of nodulation and trifolitoxin production in the expression of nodulation competitiveness by T24. Unlike wildtype T24, transposon mutants of T24 lacking trifolitoxin production were unable to decrease clover nodulation by an effective, trifolitoxin-sensitive strain of R. leguminosarum bv. trifolii. A non-nodulating transposon mutant of T24 prevented clover nodulation by a trifolitoxin-sensitive R. leguminosarum bv. trifolii when co-inoculated with a T24 mutant lacking trifolitoxin production. Neither mutant alone prevented nodulation by the trifolitoxin-sensitive strain. These results demonstrate that trifolitoxin production and nodulation are required for the expression of nodulation competitiveness by strain T24. A trifolitoxin-sensitive strain of R. meliloti did not nodulate alfalfa when co-inoculated with T24 and a trifolitoxin-resistant strain of R. meliloti. Thus, a trifolitoxin-producing strain was useful in regulating nodule occupancy on a legume host other than clover. Trifolitoxin production was constitutive in both minimal and enriched media. Trifolitoxin was found to inhibit the growth of 95% of all strains of R. leguminosarum bvs. trifolii, viceae, and phaseoli tested. Strains of all 13 biotypes of R. leguminosarum bv. trifolii were inhibited by trifolitoxin. Three strains of R. fredii were also inhibited. Strain T24 ineffectively nodulated 46 clover species, did not nodulate Trifolium ambiguum, and induced partially effective nodules on Trifolium micranthum. Since T24 produced partially effective nodules on T. micranthum and since a trifolitoxin-minus mutant of T24 induced ineffective nodules, trifolitoxin production is not the cause of the symbiotic ineffectiveness of T24.  相似文献   

20.
Rhizobium leguminosarum biovar viciae and Rhizobium leguminosarum biovar trifolii have separate uptake systems for 4-hydroxybenzoate and protocatechuate. The 4-hydroxybenzoate uptake system (pobP) is inhibited by a range of compounds with substitution at the 4-position on the aromatic ring whereas the uptake system for protocatechuate (pcaP) is markedly inhibited only by other dihydroxybenzoic acids. The rate of 4-hydroxybenzoate uptake is very low in Rhizobium leguminosarum and Rhizobium trifolii grown on protocatechuate but mutants defective in 4-hydroxybenzoate uptake transport protocatechuate at rates similar to the wild-type grown under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号