首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Many animal and plant taxa reach their highest endemism and species richness in montane regions. The study of elevational range limits is central to understanding this widespread pattern and to predicting the responses of montane species to climate change. Yet, because large‐scale manipulations of the distributions of most species are difficult, the causes of species’ elevational range limits (e.g. competitive interactions, physiological specialization) are poorly understood. Here, we harness the power of new mechanistic approaches to dissect the factors that underlie the elevational replacement of two salamander species in the Appalachian Highlands. Our results challenge the long‐held idea that competitive interactions drive the lower elevational range limits of montane species and that physiological stress prevents low‐elevation species from expanding to high elevations. We show that physiological constraints drive the lower elevational range limit of the montane‐endemic species, Plethodon jordani. Conversely, we find that competition with P. jordani prevents the low‐elevation species, P. teyahalee, from expanding its range to include higher‐elevation habitats. These results are broadly consistent with the biogeography and behavior of other montane species, suggesting that similar mechanisms underlie patterns of elevational zonation across a variety of taxa and montane regions. To the extent that our findings are taxonomically and geographically widespread, these results challenge the idea that competitive release at species’ lower elevational range limits is driving the downslope range shifts exhibit by some montane taxa. Instead, our results raise the sobering possibility that even small changes in climate might cause erosion of the ranges of many high‐elevation species.  相似文献   

2.
Climatic zonation drives latitudinal variation in speciation mechanisms   总被引:2,自引:0,他引:2  
Many groups of organisms show greater species richness in the tropics than in the temperate zone, particularly in tropical montane regions. Forty years ago, Janzen suggested that more limited temperature seasonality in the tropics leads to greater climatic zonation and more climatic barriers to organismal dispersal along elevational gradients in the tropics relative to temperate regions. These factors could lead to differences in how species arise in tropical versus temperate regions and possibly contribute to greater tropical diversity. However, no studies have compared the relationships among climate, elevational distribution and speciation in a group inhabiting both tropical and temperate regions. Here, we compare elevational and climatic divergence among 30 sister-species pairs (14 tropical, 16 temperate) within a single family of salamanders (Plethodontidae) that reaches its greatest species richness in montane Mesoamerica. In support of Janzen's hypothesis, we find that sister species are more elevationally and climatically divergent in the tropics than in the temperate zone. This pattern seemingly reflects regional variation in the role of climate in speciation, with niche conservatism predominating in the temperate zone and niche divergence in the tropics. Our study demonstrates how latitudinal differences in elevational climatic zonation may increase opportunities for geographical isolation, speciation and the associated build-up of species diversity in the tropics relative to the temperate zone.  相似文献   

3.
The rapid changes in altitude, and associated habitat, of mountain ecosystems make them ideal natural laboratories for testing the effect of environmental heterogeneity on species assemblage. Our understanding of the sensitivity of Australian reptiles to elevational clines is limited. We examined lizard distribution across three elevation zones (montane, subalpine and alpine), spanning from 900 to 1840 m above sea level, in the Australian alps. We aimed to examine how elevation influences species diversity and abundance, and ectoparasite load, and whether species alter their habitat use amongst different elevational zones. Active searches were conducted across the elevation zones to identify lizard community structure (at least 16 species) across elevational zones, along with skink habitat preferences and the ectoparasite load. Skink diversity and abundance were negatively correlated with increased elevation. The alpine zone had significantly lower diversity and abundance of skinks. Habitat use differed amongst both elevations and species. Ectoparasite prevalence was also significantly diminished in the alpine zone. Ectoparasites only infected a subset of the skink community, with ectoparasite load increasing as the active season progressed. This study provides evidence of the complex interplay between elevation and species diversity, as well as the differences in ectoparasite pressure along elevational gradients in the Australian alps.  相似文献   

4.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

5.
Terrestrial vertebrates show striking changes in species richness across topographic gradients. For mammals, nearly twice as many species per unit area occur in topographically complex regions as in adjacent lowlands. The geological context of this pervasive biogeographic pattern suggests that tectonic processes have a first‐order impact on regional diversity. I evaluate ecological, evolutionary, and historical influences of tectonics and topography on the regional diversity of terrestrial mammals, focusing on the hypothesis that diversification rates are higher in active versus passive tectonic settings. Ten predictions follow from this hypothesis. 1) The timing of peaks in speciation should be congruent with the timescale for tectonic episodes. 2) The rates of speciation and genetic differentiation of populations should be greater for species inhabiting topographically complex regions than spatially continuous landscapes. 3) If topographic complexity per se promotes diversification, then a cluster of young divergences should occur for montane species compared to lowland relatives. 4) Endemism in tectonically active regions should reflect origination within the region rather than range reduction from larger areas. 5) Extinction rates should differ for lineages in tectonically active regions compared to adjacent lowlands. 6) The relationship between local and regional species richness should differ between topographic settings because of higher beta diversity in topographically complex regions. 7) Species originating in topographically complex regions should colonize adjacent lowlands more often than the reverse pattern. 8) North‐south mountain ranges should have higher regional species richness than east‐west mountain ranges. 9) Areas with multiple mountain ranges should have higher regional species richness than comparable areas with single mountain ranges. 10) Global climate changes should affect diversification in tectonically active regions. Research addressing these topics places elevational diversity gradients into a geohistorical context and integrates data from modern biotas and the fossil record.  相似文献   

6.
Aim Data on spatial and temporal turnover in species composition within a region is essential to design regional protected areas. Montane systems are often recognized as biodiversity hotspots. The primary objective of this study is to identify patterns of montane bird diversity across multiple spatial and temporal scales using an additive diversity partitioning framework. Location The Ailao Mountains, central Yunnan Province, China. Methods We used point counts to sample bird communities in four elevational zones, on eastern and western slopes, during both the breeding and the non‐breeding seasons. Diversity (richness and Shannon) was partitioned across space (points, elevational zones and slopes) and time (seasons). We used permutation tests to compare observed values to values expected by random chance. A complementary cluster analysis was also used to evaluate beta diversity. Results Overall, the gamma diversity was attributed to significantly higher beta diversity (relative to that of randomization tests) among elevational zones and, to a lesser extent, between slopes. For Shannon–Wiener Index, beta diversity between seasons was significantly higher than expected and had a similar contribution to the gamma diversity as with beta diversity between slopes. Hierarchical cluster analysis supported the findings for Shannon–Wiener Index. The contribution of beta diversity among points to gamma diversity within each elevational zone generally lessened with increasing elevation. Main conclusions Our results show significantly high levels of beta diversity among elevational zones and between slopes, as well as between seasons for Shannon diversity, in a small area of the Ailao Mountain range. Thus, a regional montane reserve system should cover the entire elevational gradient and multiple slopes, rather than only the montane crest. Furthermore, higher pattern diversity in lower elevational zones suggests that larger areas should be preserved at lower elevational zones. Finally, the design of regional reserve systems require more studies conducted at multiple seasons at a regional scale.  相似文献   

7.
The Tropical Andes are an important global biodiversity hotspot, harbouring extraordinarily high richness and endemism. Although elevational richness and speciation have been studied independently in some Andean groups, the evolutionary and ecological processes that explain elevational richness patterns in the Andes have not been analysed together. Herein, we elucidate the processes underlying Andean richness patterns using glassfrogs (Centrolenidae) as a model system. Glassfrogs show the widespread mid‐elevation diversity peak for both local and regional richness. Remarkably, these patterns are explained by greater time (montane museum) rather than faster speciation at mid‐elevations (montane species pump), despite the recency of the major Andean uplift. We also show for the first time that rates of climatic‐niche evolution and elevational change are related, supporting the hypothesis that climatic‐niche conservatism decelerates species' shifts in elevational distributions and underlies the mid‐elevation richness peak. These results may be relevant to other Andean clades and montane systems globally.  相似文献   

8.
Our understanding of geographic patterns of species diversity and the underlying mechanisms is increasing rapidly, whereas the temporal variation in these patterns remains poorly understood. We examined the seasonal species richness and species turnover patterns of non‐volant small mammals along three subtropical elevational gradients in southwest China. Small mammal diversity was surveyed in two seasons (early wet season and late wet season) using a standardized sampling protocol. The comparison of species richness patterns between two seasons indicated a temporal component in magnitude and shape, with species richness at high elevations clearly increased during the late wet season. Species richness demonstrated weak correlations with modelled temperature and precipitation. The elevational pattern of species turnover measured by Chao‐Sørenson similarity index also changed seasonally, even though the temporal pattern varied with scale. Species turnover between neighboring elevations at high elevations was slower in the late wet season. Meanwhile, there was an acceleration of species turnover along the whole range of the gradient. The seasonal change in species diversity patterns may be due to population‐level increases in abundance and elevational migration, whereas seasonal variation in factors other than temperature and precipitation may play a greater role in driving seasonal diversity patterns. Our study strongly supports the seasonality in elevational patterns of small mammal diversity in subtropical montane forests. Thus it is recommended that subsequent field surveys consider temporal sampling replicate for elevational diversity studies.  相似文献   

9.
One of the predicted biological responses to climate warming is the upslope displacement of species distributions. In the tropics, because montane assemblages frequently include local endemics that are distributed close to summits, these species may be especially vulnerable to experiencing complete habitat loss from warming. However, there is currently a dearth of information available for tropical regions. Here, we present a preliminary appraisal of this extinction threat using the herpetological assemblage of the Tsaratanana Massif in northern Madagascar (the island's highest massif), which is rich with montane endemism. We present meteorological evidence (individual and combined regional weather station data and reanalysis forecast data) for recent warming in Madagascar, and show that this trend is consistent with recent climate model simulations. Using standard moist adiabatic lapse rates, these observed meteorological warming trends in northern Madagascar predict upslope species displacement of 17–74 m per decade between 1993 and 2003. Over this same period, we also report preliminary data supporting a trend for upslope distribution movements, based on two surveys we completed at Tsaratanana. For 30 species, representing five families of reptiles and amphibians, we found overall mean shifts in elevational midpoint of 19–51 m upslope (mean lower elevation limit 29–114 m; mean upper elevation limit ?8 to 53 m). We also found upslope trends in mean and median elevational observations in seven and six of nine species analysed. Phenological differences between these surveys do not appear to be substantial, but these upslope shifts are consistent with the predictions based on meteorological warming. An elevational range displacement analysis projects complete habitat loss for three species below the 2 °C ‘dangerous’ warming threshold. One of these species is not contracting its distribution, but the other two were not resampled in 2003. A preliminary review of the other massifs in Madagascar indicates potential similar vulnerability to habitat loss and upslope extinction. Consequently, we urgently recommend additional elevational surveys for these and other tropical montane assemblages, which should also include, when possible, the monitoring of local meteorological conditions and habitat change.  相似文献   

10.
物种多样性海拔分布格局及其形成机制的研究是生物地理学和宏观生态学的重要议题之一。本文利用西双版纳植物专著资料, 结合高分辨率的地形和气候等数据, 探讨了面积、边界限制和现代气候对西双版纳野生种子植物物种丰富度及物种密度海拔分布格局的影响。结果表明: (1)物种丰富度呈单峰分布格局, 面积(81.9%)、边界限制(17.5%)和气候(60.0-69.3%)都不同程度地解释了物种丰富度的单峰格局; (2)利用幂函数种-面积关系计算的物种密度沿海拔大致呈减小的分布趋势, 气候的解释率降低为32.6-40.6%, 与边界限制无显著相关关系; (3)利用等面积高度带划分得到的物种密度沿海拔呈单峰变化趋势, 物种密度与边界限制无显著相关性, 但气候对物种密度的解释率为81.6-89.9%。研究结果有助于准确全面地理解物种多样性的海拔分布格局及其成因机制, 为西双版纳生物多样性保护提供理论支撑和实践指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号