首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

Azaras’s capuchin monkey (Sapajus cay) is a poorly studied species in ecological aspects. We investigated behavioral activities and diet of a group of S. cay in a remnant of the Brazilian Cerrado. We sought to identify the most frequent behavior that the group engaged in, as well as to verify possible differences in behavioral patterns and diet between adult males and females. From January to July 2012 we collected behavioral and foraging data for a group of 21 individuals using scan sampling. Behaviors and food items consumed were analyzed using percentages and two proportions Z-tests to assess differences between males and females. We obtained 878 scans in approximately 202 hours of sampling effort, resulting in 4,159 individual activity records of capuchin monkeys. The group allocated time to traveling (41.3%), resting (25.5%), feeding (14.3%), foraging (13.7%), and social activities (5.1%). Females spent more time foraging and feeding, while males spent more time resting. Fruits (61.4%), invertebrates (15.3%), and seeds (14.3%) were the most common food items consumed. We did not find differences in food consumption between sexes. Behavioral activities may be influenced by habitat quality of the studied area, opportunistic habits, and plasticity in the diet.  相似文献   

2.
Territorial behavior of overwintered individuals of Metrocoris histriowas observed in an upstream area. Adults of both sexes held territories, but male territories were larger than those of females. Severe competition occurred among males for territories which give them access to receptive females. The effects of male body length and midleg length on establishment of territories were not significant. The effect of female midleg length on activity of females entering preferred foraging sites was equally not significant. Instead, territorial behavior increased with male age and males stayed longer at prime sites. Females of intermediate age were likely to occupy prime sites. Females had longer territory residence time than males. The sexes were dimorphic with respect to midleg length, and dimorphism in M. histriomay be related to a difference in life history, in that sexual selection may be relaxed due to asynchronous adult emergence patterns.  相似文献   

3.
Invertebrates are the main source of protein for many small-to-medium sized monkeys. Prey vary in size, mobility, degree of protective covering, and use of the forest, I.e. Canopy height, and whether they are exposed or embed themselves in substrates. Sex-differentiation in foraging patterns is well documented for some monkey species and recent studies find that color vision phenotype can also affect invertebrate foraging. Since vision phenotype is polymorphic and sex-linked in most New World monkeys - males have dichromatic vision and females have either dichromatic or trichromatic vision - this raises the possibility that sex differences are linked to visual ecology. We tested predicted sex differences for invertebrate foraging in white-faced capuchins Cebus capucinus and conducted 12 months of study on four free-ranging groups between January 2007 and September 2008. We found both sex and color vision effects. Sex: Males spent more time foraging for invertebrates on the ground. Females spent more time consuming embedded, colonial invertebrates, ate relatively more "soft" sedentary invertebrates, and devoted more of their activity budget to invertebrate foraging. Color Vision: Dichromatic monkeys had a higher capture efficiency of ex posed invertebrates and spent less time visually foraging. Trichromats ate relatively more "hard" sedentary invertebrates. We con clude that some variation in invertebrate foraging reflects differences between the sexes that may be due to disparities in size, strength, reproductive demands or niche preferences. However, other intraspecific variation in invertebrate foraging that might be mistakenly attributed to sex differences actually reflects differences in color vision.  相似文献   

4.
Sex differences in giraffe foraging behavior at two spatial scales   总被引:3,自引:0,他引:3  
We test predictions about differences in the foraging behaviors of male and female giraffes (Giraffa camelopardalis tippelskirchi Matchie) that derive from a hypothesis linking sexual size dimorphism to foraging behavior. This body-size hypothesis predicts that males will exhibit specific behaviors that increase their dry-matter intake rate relative to females. Foraging behavior was examined at two hierarchical levels corresponding to two spatial and temporal scales, within patches and within habitats. Patches are defined as individual trees or shrubs and habitats are defined as collections of patches within plant communities. Males were predicted to increase dry-matter intake rate within patches by taking larger bites, cropping bites more quickly, chewing less, and chewing faster. Within habitats, males were expected to increase intake rate by increasing the proportion of foraging time devoted to food ingestion as opposed to inter-patch travel time and vigilance. The predictions were tested in a free-ranging population of giraffes in Mikumi National Park, Tanzania. Males spent less total time foraging than females but allocated a greater proportion of their foraging time to forage ingestion as opposed to travel between patches. There was no sex difference in rumination time but males spent more time in activities other than foraging and rumination, such as walking. Within patches, males took larger bites than females, but females cropped bites more quickly and chewed faster. Males had longer per-bite handling times than females but had shorter handling times per gram of intake. Within habitats, males had longer average patch residence times but there was no significant sex difference in inter-patch travel times. There was no overall difference between sexes in vigilance while foraging, although there were significant sex by habitat and sex by season interactions. Although not all the predictions were confirmed, overall the results agree qualitatively with the body-size hypothesis. Sex-related differences in foraging behavior led to greater estimated intake rates for males at the within-patch and within-habitat scales. Received: 20 November 1995 / Accepted: 5 November 1996  相似文献   

5.
Colonial seabirds are central place foragers and likely to be subject to substantial competition for resources. Mechanisms proposed for reducing intra‐specific competition include differential inter‐sex area use mediated by adult choice. We used GPS loggers and dive recorders to study area use and dive depth in a total of 27 male and 26 female imperial cormorants Phalacrocorax atriceps breeding at a colony of some 6500 birds at Punta Leon, Chubut, Argentina during 2004 and 2005. Although time spent travelling and distances between the colony and foraging sites were similar for both sexes, males and females travelled away from their colony using routes virtually perpendicular to each other so that their foraging areas were distinctly different; females hunted close to the coast while males foraged offshore in deeper water. Consideration of foraging efficiency underwater, defined as the duration spent on the bottom divided by the dive cycle duration, showed that females were more efficient at depths < 40 m while males more efficient at depths > 40 m. We suggest that the substantial sexual dimorphism in this species may be responsible for the different depth‐linked foraging efficiencies and that selection for appropriate depths could lead to differential habitat use and putative differences in prey selection.  相似文献   

6.
We examined whether sexual differences in trophic morphology are associated with sexual differences in foraging behavior through two laboratory experiments on rufous hummingbirds (Selasphorus rufus) designed to compare probing abilities (maximum extraction depths) and handling times of sexes at flowers. Bills of female S. rufus are about 10.5% longer than bills of males, and this difference was associated with sexual differences in foraging abilities. Maximum extraction depths of female S. rufus were significantly greater than those of males, and no overlap between the sexes was observed. Moreover, handling times of females were shorter than handling times of males at flowers having longer corollas (15 mm). Thus, because of their longer bills, female S. rufus have the potential to feed from longer flowers than males, and can do so more quickly. We suggest that no single mechanism is responsible for the evolution of sexual dimorphism in bill lengths of hummingbirds, but rather that the dimorphism probably reflects the combined effects of reproductive role division and intersexual food competition, and possibly, sexual selection.  相似文献   

7.
Foraging traditions in primates are becoming the subject of increasing debate. Recent evidence for such a phenomenon was recently provided for wild Cebus capucinus [Fragaszy & Perry, 2003]. To better understand the bases of animal traditions, one should examine intrapopulation behavioral variability and the influence of social context on within-group transmission of specific foraging patterns. We studied the variability of foraging patterns across age and sex classes, and the proximity patterns of juveniles to adults of both sexes in a group of wild tufted capuchin monkeys (Cebus nigritus) living in the Iguazu National Park, Argentina. Foraging activity was examined for a period of 9 months in terms of proportions of focal samples devoted to foraging on certain food targets, microhabitats, and supports, and using specific foraging patterns. Proximity analyses were performed to reveal patterns of association between juveniles and adults. Sex differences in foraging behavior were present and overrode age differences. Overall, males ate more animal foods, foraged more for invertebrates on woody microhabitats (especially large branches), palms, and epiphytes, and used lower and larger supports than females. Females ate more fruits, foraged more on leaves and bamboo microhabitats, and used smaller supports than males. Juveniles were similar to adults of the same sex in terms of food targets, foraging substrates, and choice of supports, but were less efficient than adults. Proximity patterns indicated that juvenile males stayed in close spatial association with adult males and preferentially focused their "food interest" on them. This phenomenon was less evident in juvenile females. The degree to which juveniles, especially males, showed some of the sex-typical foraging patterns correlated positively with their proximity to adults of the same sex. These findings suggest that the acquisition of foraging behaviors by juvenile males is socially biased by their closeness to adults of the same sex.  相似文献   

8.
Sex differences in foraging behavior have been widely reported in the ornithological literature, but few examples are available from tropical avifaunas. Differences between males and females in foraging behavior have been hypothesized to be a byproduct of sexual size dimorphism or a result of niche partitioning to reduce intersexual competition for food or different reproductive roles. From 2010 to 2013, I used foraging data and mist‐net capture rates from multiple study sites to examine possible sex differences in the foraging behavior of two New Guinean Pachycephala whistlers. I found that male Regent (Pachycephala schlegelii) and Sclater's (Pachycephala soror) whistlers consistently foraged in higher strata than females. It is unlikely that these differences are due to sexual dimorphism because these species exhibit little sexual dimorphism. Sex differences in foraging behavior were consistent across years and study sites and did not appear linked to breeding behavior, supporting the food‐competition hypothesis, but not the reproductive‐roles hypothesis. Male territorial defense often occurs in relatively high strata in Pachycephala whistlers, possibly influencing male foraging strata. However, male territorial behavior cannot explain why females predominately forage in lower strata. Instead, intersexual competition for food resources is likely the primary driver of differences in the foraging behavior of male and female Regent and Sclater's whistlers.  相似文献   

9.
Shannon G  Page BR  Duffy KJ  Slotow R 《Oecologia》2006,150(2):344-354
Elephants (Loxodonta africana) exhibit pronounced sexual dimorphism, and in this study we test the prediction that the differences in body size and sociality are significant enough to drive divergent foraging strategies and ultimately sexual segregation. Body size influences the foraging behaviour of herbivores through the differential scaling coefficients of metabolism and gut size, with larger bodied individuals being able to tolerate greater quantities of low-quality, fibrous vegetation, whilst having lower mass-specific energy requirements. We test two distinct theories: the scramble competition hypothesis (SCH) and the forage selection hypothesis (FSH). Comprehensive behavioural data were collected from the Pongola Game Reserve and the Phinda Private Game Reserve in South Africa over a 2.5-year period. The data were analysed using sex as the independent variable. Adult females targeted a wider range of species, adopted a more selective foraging approach and exhibited greater bite rates as predicted by the body size hypothesis and the increased demands of reproductive investment (lactation and pregnancy). Males had longer feeding bouts, displayed significantly more destructive behaviour (31% of observations, 11% for females) and ingested greater quantities of forage during each feeding bout. The independent ranging behaviour of adult males enables them to have longer foraging bouts as they experience fewer social constraints than females. The SCH was rejected as a cause of sexual segregation due to the relative abundance of low quality forage, and the fact that feeding heights were similar for both males and females. However, we conclude that the differences in the foraging strategies of the sexes are sufficient to cause spatial segregation as postulated by the FSH. Sexual dimorphism and the associated behavioural differences have important implications for the management and conservation of elephant and other dimorphic species, with the sexes effectively acting as distinct “ecological species”.  相似文献   

10.
Studies of cooperatively breeding birds rarely benefit from the extensive research on adaptive foraging behaviour, despite the potential for concepts such as state‐dependent foraging to explain many aspects of behaviour in social groups. For example, sex differences in preferred foraging techniques used by green woodhoopoes, Phoeniculus purpureus, have previously been explained by sexual dimorphism in bill length and the benefits afforded by foraging specialization and niche differentiation within cooperative groups. Contrary to this argument, there were no sex differences in mean foraging success and/or prey size captured when males and females used the same foraging techniques. Subordinates of both sexes did experience lower and more varied foraging success compared with dominants, but probably only as a consequence of competition or inexperience. However, dominant males experienced greater variance in individual foraging success compared with dominant females, and dominant males also experienced greater variances in prey size when using their preferred foraging techniques. Dominant males therefore appeared to specialize in foraging techniques that provided more variable rewards, whilst dominant females consistently chose to minimize variation in reward. Dominant females also experienced less variance in foraging returns when using the same techniques as males, suggesting a possible link with sexual dimorphism in bill length. Partitioning of foraging niches in dominant green woodhoopoes therefore appears to be better explained by sex differences in variance (risk) sensitivity to foraging rewards. We suggest that this kind of detailed analysis of state‐dependent foraging has the potential to explain many of the crucial age and sex differences in behaviour within cooperative groups.  相似文献   

11.
Understanding how animals allocate their foraging time is a central question in behavioural ecology. Intrinsic factors, such as body mass and size differences between sexes or species, influence animals’ foraging behaviour, but studies investigating the effects of individual differences in body mass and size within the same sex are scarce. We investigated this in chick‐rearing masked boobies Sula dactylatra, a species with reversed sexual dimorphism, through the simultaneous deployment of GPS and depth‐acceleration loggers to obtain information on foraging movements and activity patterns. Heavier females performed shorter trips closer to the colony than lighter females. During these shorter trips, heavier females spent higher proportions of their flight time flapping and less time resting on the water than lighter females did during longer trips. In contrast, body mass did not affect trip duration of males, however heavier males spent less time flapping and more time resting on the water than lighter males. This may occur as a result of higher flight costs associated with body mass and allow conservation of energy during locomotion. Body size (i.e. wing length) had no effect on any of the foraging parameters. Dive depths and dive rates (dives h?1) were not affected by body mass, but females dived significantly deeper than males, suggesting that other factors are important. Other studies demonstrated that females are the parent in charge of provisioning the chick, and maintain a flexible investment under regulation of their own body mass. Variation in trip length therefore seems to be triggered by body condition in females, but not in males. Consequently, shorter trips are presumably used to provision the chick, while longer trips are for self‐maintenance. Our findings underline the importance of accounting for the effects of body mass differences within the same sex, if sex‐specific foraging parameters in dimorphic species are being investigated.  相似文献   

12.
Sex-specific niche segregation is often used to explain sexual size dimorphism (SSD). However, whether food niche partitioning between sexes occurs as a case of sexual size dimorphism or by other mechanisms, such as behavioural dimorphism or habitat segregation, remains poorly understood. To evaluate the nature and extent of food-niche differentiation between sexes in a solitary predator I examined variation in the diet of male and female pine martensMartes martes Linnaeus, 1758 in years of high and low rodent abundance. Small mammals were the most important prey for pine martens in years of both low and high rodent abundance (occurring in more than 49% of scats). Birds, invertebrates and plant material were relatively common food items in summer diet, whereas ungulate carcasses were often consumed in autumn—winter. In general, males consumed more ungulate carcasses, plant material, amphibians and reptiles than did females, whereas females preyed more on squirrels and birds than males. There was significant seasonally dependent, between-sex variation in the occurrence of shrews, small rodents, other mammals, birds and invertebrates in marten diet. Whereas the occurrence of bank vole, birds, carcasses and plant material changed between sexes, seasons and years with various rodent abundances, both sexes consumed larger prey and had increased food niche breadth in years of low compared with high rodent abundance. Neither prey size nor food niche breadth were significantly different between males and females. The food-niche overlap between sexes was consistently lower in spring and in years of low rodent abundance. A wider geographical comparison of different marten populations showed that the diet of males and females varied significantly between locations. Females consistently preyed on squirrels and birds, whereas males fed more often on ungulate carcasses and plant material. Local and geographical comparison of male and female diets suggest that food-niche partitioning between male and female pine martens changes across different habitat and food conditions, and is not related to sexual size dimorphism, but rather to behavioural differences between sexes.  相似文献   

13.
Giant petrels ( Macronectes spp.) are the most sexually dimorphic of all seabirds. We used satellite-tracking and mass change during incubation to investigate the influence of sexual size dimorphism, in terms of the intersexual food competition hypothesis, on foraging and fasting strategies of northern giant petrels at South Georgia. Females foraged at sea whereas males foraged mainly on the South Georgia coast, scavenging on seal and penguin carcasses. Foraging effort (flight speed, distance covered, duration of foraging trips) was greater for females than for males. In contrast, foraging efficiency (proportionate daily mass gain while foraging) was significantly greater for males than for females. Females were significantly closer to the desertion mass threshold than males and could not compensate for the mass loss during the incubation fast while foraging, suggesting greater incubation costs for females than for males. Both sexes regulated the duration and food intake of foraging trips depending on the depletion of the body reserves. In males the total mass gain was best explained by mass at departure and body size. We suggest that sexual segregation of foraging strategies arose from size-related dominance at carcasses, promoting sexual size dimorphism. Our results indicate that sex-specific differences in fasting endurance, contest competition over food and flight metabolic rates are key elements in maintenance of sexual size dimorphism, segregating foraging strategies and presumably reducing competition between sexes.  相似文献   

14.
Sex differences in foraging can be explained by avoidance of competition, reproductive strategies or breeding roles. We investigated foraging behavior and potential intersexual differences in the Restinga Antwren over the year, recording foraging tactics, their timing, substrate and their height above the ground. We found significant differences between sexes in foraging tactics, substrates and height of foraging. Females foraged mostly on the ground while males in the middle and top of the vegetation. Smaller differences in foraging height between sexes in the breeding season compared with non-breeding season support the reproductive strategies model, although the avoidance of competition cannot be excluded.  相似文献   

15.
Sex differences in disease susceptibility are widespread, and these disparities are often compounded in cases where sexual dimorphism increases exposure risk to parasites for one sex more than the other. Studies rarely link sex differences in disease susceptibility to sex differences in infection avoidance behavior. Yet, understanding the intersection of hosts’ susceptibility to infection and infection avoidance behavior is essential to predicting infection risk variation. Here, we use the fruit fly Drosophila melanogaster and a generalist entomopathogenic fungus, Metarhizium robertsii, which can be transmitted directly, indirectly, and post-mortem as a model host–pathogen system. We test whether the relationship between susceptibility to infection and pathogen avoidance behavior covaries with host sex. We first measured differences in resistance between male and female flies after three different types of exposure—direct, sexual, and environmental—to infectious fungal conidiospores. Then, we tested whether male and female flies differed in the likelihood of mating with infected partners and their avoidance of food patches with increased infection risk. Females were more susceptible to infection under all three exposure techniques. When confronted with an infectious partner, females mated sooner than males. However, when given a choice between an exposed partner and an unexposed partner, females take longer to begin copulating compared with males, though neither sex was more likely to choose the unexposed partner than expected by chance. Neither male nor females flies avoided food patches containing infectious conidiospores, though only females show an aversion to food sites containing an infectious fly corpse. These experiments suggest that sex differences in disease susceptibility may be counteracted via differential pathogen avoidance behavior, though the strength of avoidance behavior appears to vary across different contexts of infection risk.  相似文献   

16.
We studied the effect of sex and group size on the proportion of time a greater rhea, Rhea americana, allocates to vigilance and feeding during the breeding and the non-breeding seasons. We analysed 175 records of focal animals that were feeding alone or in groups of 2 to 26 birds. In both seasons, males spent more time in vigilance and less time in feeding than females. Both sexes spent more time in vigilance and less time in feeding during the breeding season. Sexual and seasonal differences in vigilance were the result of different mechanisms. Males had shorter feeding bouts than females but there were no sexual differences in the length of the vigilance bouts. On the contrary, seasonal differences were the result of males and females having longer vigilance bouts during the breeding season but there were no seasonal differences in the length of the feeding bouts. During the non-breeding season, individual vigilance was higher in rheas foraging alone than in groups. In this case, solitary birds had longer vigilance and shorter feeding bouts than birds foraging in groups. We discuss the possible effect of intragroup competition and food availability on the allocation of time between feeding and vigilance in this species.  相似文献   

17.
Sexual segregation in Soay sheep (Ovis aries) was investigated using an experimental approach in order to test the sexual dimorphism-body size hypothesis. Two corollaries of the sexual dimorphism-body size hypothesis were tested: (1) in dimorphic species males, the larger sex, have relatively smaller bite sizes on short swards because of the scaling of incisor arcade with body weight, and (2) they move off earlier to feed on taller but poorer-quality swards when such swards are patchily distributed on a scale which enables the spatial segregation of individuals. Patch choice between sexes was estimated using a matrix of grass patches which differed in both quality and biomass of grass on offer (HQ: high-quality-low-biomass; LQ: low-quality-high-biomass). Sex differences in patch choice and grazing behaviour were tested in short-term preference trials. Incisor breadth showed no significant difference between sexes. On the other hand, muzzle width was dimorphic, with females having a narrower muzzle than males. Bite size was significantly different between the sexes, being smaller in females than in males, although it was not significantly different between sward types. Females had a higher bite rate than males and the bite rate was higher in the HQ sward type than the LQ sward type. When the effect of body mass was removed, no sex differences in muzzle size, bite size or bite rate were found. The intake rate did not differ between the sexes or between sward types. Whilst both sexes preferred the HQ sward type, females spent a significantly longer time feeding on the LQ sward type than did males. The difference detected between the sexes in patch choice was not consistent directly with the sexual dimorphism-body size hypothesis. Alternative explanations based on sex differences in foraging behaviour in relation to body mass sexual dimorphism are discussed to explain the result. Received: 1 February 1999 / Accepted: 12 May 1999  相似文献   

18.
Sexual size dimorphism can result in reduced competition if it leads males and females to use different foraging techniques or consume different prey items. Among woodpeckers, differences between males and females in bill length are common and may explain foraging differences in this family of birds. Northern Flickers (Colaptes auratus) are ground‐foraging woodpeckers that specialize on ants. However, the overall contribution of ants to their diet and the proportions of particular ant genera in their diet are not well known. To understand the relationship between bill morphology and the consumption of prey items, we compared the bill length and bill width of male and female flickers. We then collected and analyzed fecal samples from breeding flickers (N = 40 males, 33 females) at a study site in central British Columbia, Canada. Bills of male flickers were significantly longer (4%) and wider (5%) than those of females. Of 11 prey types identified, ants made up over 99% of their diet, and the abundance and composition of ant taxa in the diet did not differ between the sexes. We found significant year and time of season effects, with the abundance of Tapinoma sessile and Lasius spp. increasing from May to the end of June and differing between years. This difference in diet composition between years may have been due to changes in the abundance or accessibility of certain ant taxa related to differences in vegetation structure or weather. Nine ant taxa were consumed by flickers and the four most common were T. sessile, Lasius spp.,Myrmica spp., and the Formica fusca species group. The degree of dimorphism in bill size of male and female Northern Flickers in our study was smaller than reported for several species of arboreal‐foraging woodpeckers, suggesting that bill size of ground‐foraging woodpeckers may not be strongly linked to niche separation at the level of prey selection.  相似文献   

19.
Summary I examined the foraging behavior during the breeding and non-breeding seasons, May and July 1986, of the fringe-toed lizard Uma inornata (Iguanidae). During the breeding season males differ from females in their diet and in their foraging time strategy, males exhibiting time minimization and females energy maximization. In May, plant associated foods were selectively eaten. Males concentrated on flowers, a readily available quick energy food, which reduced foraging time and increased time for reproductive activities. Time budgets indicate that males spend over twice as much time in the open and in movement in May than do females. Females at this time restrict their activities to the cover of perennial bushes, and feed primarily on plant foods (flowers and arthropods). Energy maximization appears to be maintained by both sexes in the non-breeding season when food resources diminished to one-half of those in the breeding season. The lizards were less selective in their July feeding habits, broadening their diets to include ground-dwelling arthropods and foliage. Predation by these lizards follows a wait-ambush mode of foraging.  相似文献   

20.
We considered the relationship between dental sexual dimorphism and diet in 542 specimens of olive, red, and black-and-white colobus. Using univariate statistical techniques, we examined 41 measurements of the maxillary and mandibular dentitions. The results reveal two trends of dental sexual dimorphism in black-and-white colobus wherein (i) maleColobus guereza andC. angolensis are generally larger than females throughout the dentition and (ii)C. satanas and, to a lesser degree,C. polykomos exhibit reduced sexual differences in the canine base and females are slightly larger than males in noncanine dimensions. Females of the red colobus,Procolobus (Piliocolobus) badius, are slightly larger than males in most noncanine measurements but canine sex differences are more pronounced than those of black-and-white colobus.Procolobus (Procolobus) verus, the olive colobus, is characterized by some of the largest canine sex differences, yet the sexes do not differ much in noncanine mean values. When patterns of sexual dimorphism are considered in terms of specific ecology and behavior, it is possible to relate sex differences, in part, to known dietary differences. For example, overall dental morphology and the trend of sexual differences inC. satanas andC. polykomos seem to be associated with the consumption of a diet rich in seeds. The pattern of dental sexual dimorphism inC. badius may also be influenced by dietary factors in that their patrilineal social organization could restrict female access to certain foods thereby affecting rates of attrition and creating selection pressure for larger teeth. Relatively less is known of the ecology and social organization ofP. verus but their dental sexual dimorphism is possibly less related to dietary factors than is the case for red or black-and-white colobus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号