首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Sawada K  Shiraiwa Y 《Phytochemistry》2004,65(9):1299-1307
The lipid classes and unsaturation ratios of long-chain alkenones (nC37-C39), related alkyl alkenoate compounds (nC37-C38) and alkenoic acids (nC14-C22) were determined in isolated membrane and organelle fractions of Emiliania huxleyi. The percentage distribution of these compounds was predominantly high in the endoplasmic reticulum (ER) and coccolith-producing compartment (CPC)-rich membrane fraction, although alkenones and alkenoates could be detected in all membrane fractions. In particular, the alkenones were mainly located in CPC, since their distribution was closely correlated with that of uronic acids which are markers of CPC. In contrast, the alkenoic acids seemed to be mainly located in chloroplast (thylakoid)-rich fractions. The alkenone unsaturation ratio and the ratio of alkenoates to alkenones were similar in all fractions, while the unsaturation ratio of alkenoic acids in the thylakoid-rich and plasma membrane (PM)/Golgi body-rich fractions was overwhelmingly higher than that in the ER/CPC-rich fractions. Thus, alkenoic acids seemed to be typical membrane-bound lipids, and could be closely related to photosynthesis and involved in regulating membrane fluidity and rigidity in E. huxleyi. It is presumed from these results that the alkenones and alkenoates were membrane-unbound lipids that might be associated with the function of CPC.  相似文献   

2.
Rontani JF  Beker B  Volkman JK 《Phytochemistry》2004,65(24):3269-3278
Two groups of previously unidentified C37-C39 epoxyalkenones and alkenediones were detected in late stationary phase cultures of the haptophyte microalga Chrysotila lamellosa. The formation of these compounds is attributed to the involvement of enzymatic processes acting specifically on the C-21 or C-22 allylic carbon and the omega15 double bond of methyl and ethyl alkenones respectively. Thus, the epoxyalkenones appear to be derivatives of alkenones where the omega15 double bond is oxidized to the epoxide. These epoxyalkenones disappear as the cells age to be replaced by a series of alkenediones. The structures of these compounds indicate that they are derivatives of methyl and ethyl alkenones with an additional carbonyl group on the C-21 or C-22 carbon respectively and without the omega15 double bond. We propose that these compounds are formed by an initial regiospecific lipoxygenase-catalyzed peroxidation of methyl and ethyl alkenones on their C-21 or C-22 allylic carbon, respectively. Lipohydroperoxidase-catalyzed homolytic cleavage of the O-O bond could then result in the formation of conjugated ketones which may then undergo a saturation reaction to form the diketones identified. This work demonstrates that alkenones can be degraded by enzymatic reactions in senescent cells, and by implication this could also occur in the natural environment.  相似文献   

3.
The sterol compositions of 14 species of marine diatoms were determined by gas chromatography and gas chromatography-mass spectrometry. A variety of sterol profiles were found. The sterols 24-methylcholesta-5,22E-dien-3β-ol, cholest-5-en-3β-ol, and 24-methylcholesta-5,24(28)-dien-3β-ol, previously described as the most common sterols found in diatoms, were major sterols in only a few of the species. In light of this and other recent data, it is clear that these three sterols are not typical constituents of many diatom species. Most of the centric species examined had 24-methylcholesta-5,24(28)-dien-3β-ol and 24-methylcholest-5-en-3β-ol as two of their major sterols. The exception was Rhizosolenia setigera, which possessed cholesta-5,24-dien-3β-ol as its single major sterol. In contrast to the centric species, the pennate diatoms examined did not have any particular sterols common to most species. Minor levels ofΔ7-sterols, rarely found in large amounts in diatoms, were found in four species. C29sterols were found in many species; seven contained 24-ethylcholest-5-en-3β-ol and three contained 24-ethylcholesta-5,22E-dien-3β-ol, reinforcing previous suggestions that C29 sterols are not restricted to higher plants and macroalgae. 24-Ethylcholesta-5,22E-dien-3β-ol may prove to be useful for taxonomy of the genus Amphora and the order Thalassiophysales. A major sterol of Fragilaria pinnata was the uncommon algal sterol 23,24-dimethylcholesta-5,22E-dien-3β-ol. Cholesta-5,24-dien-3β-ol was the only sterol found in the culture of Nitzschia closterium. This differed from previous reports of 24-methylcholesta-5,22E-dien-3β-ol as the single major sterol in N. closterium. Two C28 sterols possessing an unusual side chain were found in Thalassi-onema nitzschioides, a C28:2 sterol (16%) and a C28:1 sterol in lower abundance (2.5%), which may be 23-methylcholesta-5,22E-dien-3β-ol and 23-methyl-5α-cholest-22E-en-3β-ol, respectively. The species Cylindrotheca fusiformis, T. nitzschioides, and Skeletonema sp. may be useful as direct sources of cholesterol in mariculture feeds due to their moderate to high content of this sterol.  相似文献   

4.
The sterols of calcareous sponges (Calcarea, Porifera)   总被引:1,自引:0,他引:1  
Sponges are sessile suspension-feeding organisms whose internal phylogenetic relationships are still the subject of intense debate. Sterols may have the potential to be used as independent markers to test phylogenetic hypotheses. Twenty representative specimens of calcareous sponges (class Calcarea, phylum Porifera) with a broad coverage within both subclasses Calcinea and Calcaronea were analysed for their sterol content. Two major pseudohomologous series were found, accompanied by some additional sterols. The first series encompassing conventional C(27) to C(29)Delta(5,7,22) sterols represented the major sterols, with ergosterol (ergosta-5,7,22-trien-3beta-ol, C(28)Delta(5,7,22)) being most prominent in many species. The second series consisted of unusual C(27) to C(29)Delta(5,7,9(11),22) sterols. Cholesterol occurred sporadically, mostly in trace amounts. The sterol patterns did not resolve intraclass phylogenetic relationships, namely the distinction between the subclasses, Calcinea and Calcaronea. This pointed towards major calcarean lipid traits being established prior to the separation of subclasses. Furthermore, calcarean sterol patterns clearly differ from those found in Hexactinellida, whereas partial overlap occurred with some Demospongiae. Hence, sterols only partly reflect the phylogenetic separation of Calcarea from both of the other poriferan classes that was proposed by recent molecular work and fatty acid analyses.  相似文献   

5.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15 degrees C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37 degrees C membranes, while 15 degrees C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15 degrees C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15 degrees C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37 degrees C, but only 50% at 15 degrees C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15 degrees C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

6.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15°C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37°C membranes, while 15°C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15°C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15°C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37°C, but only 50% at 15°C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15°C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

7.
Recent studies have shown that ancient plankton DNA can be recovered from Holocene lacustrine and marine sediments, including from species that do not leave diagnostic microscopic fossils in the sediment record. Therefore, the analysis of this so-called fossil plankton DNA is a promising approach for refining paleoecological and paleoenvironmental information. However, further studies are needed to reveal whether DNA of past plankton is preserved beyond the Holocene. Here, we identified past eukaryotic plankton members based on 18S rRNA gene profiling in eastern Mediterranean Holocene and Pleistocene sapropels S1 (~9 ka), S3 (~80 ka), S4 (~105 ka), and S5 (~125 ka). The majority of preserved ~400- to 500-bp-long 18S rDNA fragments of microalgae that were studied in detail (i.e. from haptophyte algae and dinoflagellates) were found in the youngest sapropel S1, whereas their specific lipid biomarkers (long-chain alkenones and dinosterol) were also abundant in sediments deposited between 80 and 124 ka BP. The late-Pleistocene sediments mainly contained eukaryotic DNA of marine fungi and from terrestrial plants, which could have been introduced via the river Nile at the time of deposition and preserved in pollen grains. A parallel analysis of Branched and Isoprenoid Tetraethers (i.e. BIT index) showed that most of the organic matter in the eastern Mediterranean sediment record was of marine (e.g. pelagic) origin. Therefore, the predominance of terrestrial plant DNA over plankton DNA in older sapropels suggests a preferential degradation of marine plankton DNA.  相似文献   

8.
Alkenones (C37–C40) are highly specific biomarkers produced by certain haptophyte algae in ocean and lacustrine environments and have been widely used for paleoclimate studies. Unusual shorter‐chain alkenones (SCA; e.g., C35 and C36) have been found in environmental and culture samples, but the origin and structure of these compounds are much less understood. The marine alkenone producer, Emiliania huxleyi CCMP2758 strain, was reported with abundant C35:2Me (?12, 19) alkenones when cultured at 15°C (Prahl et al. 2006). Here we show, when this strain is cultured at 4°C–10°C, that CCMP2758 produces abundant C35:3Me, C36:3Me, and small amounts of C36:3Et alkenones with unusual double‐bond positions of ?7, 12, 19. We determine the double‐bond positions of the C35:3Me and C36:3Me alkenones by GC‐MS analysis of the dimethyl disulfide and cyclobutylamine derivatives, and we provide the first temperature calibrations based on the unsaturation ratios of the C35 and C36 alkenones. Previous studies have found C35:2Me (?14, 19) and C36:2Et (?14, 19) alkenones with three‐methylene interruption in the Black Sea sediments, but this is the first reported instance of alkenones with a mixed three‐ and five‐methylene interruption configuration in the double‐bond positions. The discovery of these alkenones allows us to propose a novel biosynthetic scheme, termed the SCA biosynthesis pathway, that simultaneously rationalizes the formation of both the C35:3Me (?7, 12, 19) alkenone in our culture and the ?14, 19 Black Sea type alkenones without invoking new desaturases for the unusual double‐bond positions.  相似文献   

9.
M Kobayashi  H Mitsuhashi 《Steroids》1975,26(5):605-624
The sterols of the scallop, Patinopecten yessoensis Jay, was found to contain over 20 components. The major components were delta5-sterols, and lesser amount of ring-saturated sterols were also present. Biogenetically unusual C26 sterols (24-norcholesta-5,22-dien-3beta-ol and 24-norcholest-22-en-3beta-ol) and 24(28)-cis-24-propylidenecholest-5-en-3beta-ol (29-methylisofucosterol), 22-trans-27-nor-(24S)-24-methylcholesta-5,22-dien-3beta-ol (occelasterol), and a new sterol, 22-trans-27-nor-(24S)-24-methylcholest-22-en-3beta-ol (patinosterol), were isolated and their structures were confirmed. Occurrence of 22-trans-(24S)-24-methylcholesta-5,22-dien-3beta-ol (24-epibrassicasterol) was confirmed. 22-cis-Cholesta-5,22-dien-3beta-ol was not found.  相似文献   

10.
The sterol mixture of the southern Japan's soft coral, Sarcophyton glaucum, was found to contain 11 sterols including a novel sterol, 23,24 xi-dimethylcholesta-5,22-dien-3 beta-ol and a new diunsaturated C29 sterol. 22,23-Dihydrobrassicasterol and gorgosterol were the major components in free- and esterified sterols respectively. Brassicasterol was found in S. glaucum, in contrast to the ubiquity of 24-epibrassicasterol in the marine invertebrates in the northern districts. The new sterol (sarcosterol) was isolated; its structure as 23 xi, 24 xi-dimethylcholesta-5, 17(20)-trans-dien-3 beta-ol was based on spectra evidence and comparison with cholesta-5, 17(20)-trans-dien-3 beta-ol.  相似文献   

11.
Sphingomyelins were isolated from mucosal layers of bovine rennet stomach, duodenum, jejunoileum, and colon ascendens. The ceramides obtained after phospholipase degradation were characterized by thin-layer chromatography, mass spectrometry, and gas-liquid chromatography. The main ceramide group from all regions consisted of dihydroxy long-chain bases and normal fatty acids. Sphingosine was the predominant base in all these fractions, and only in rennet stomach were smaller amounts of the C17 and C20 homologs present. Normal saturated C16, C18, C22, and C24 fatty acids were most abundant. In rennet stomach there was in addition a ceramide group having dihydroxy long-chain bases in combination with hydroxy fatty acids. Sphingosine was the predominant long-chain base and the fatty acids were 2-hydroxy C16, C22, C23, and C24. From jejunoileum three minor ceramide fractions were isolated; these consisted of phytosphingosine and normal fatty acids C22-C24), sphingosine and 2-hydroxy fatty acids (C16-C24), and phytosphingosine and 2-hydroxy fatty acids (C22-C24), respectively. No branched paraffin chains were found in significant amounts. Sphingomyelins with trihydroxy long-chain bases and 2-hydroxy fatty acids found in jejunoileum were also detected in bovine kidney and have not been demonstrated before. These sphingomyelins from both kidney and jejunoileum showed a preferential combination of trihydroxy bases and fatty acids with very long chains (C22-C24).  相似文献   

12.
David Nes W  Nichols SD 《Phytochemistry》2006,67(16):1716-1721
The Zygomycetes fungus Mortierella alpina was cultured to growth arrest to assess the phytosterol biosynthesis pathway in a less-advanced fungus. The mycelium was found to produce 13 sterols, but no ergosterol. The sterol fractions were purified to homogeneity by HPLC and their identifies determined by a combination of GC-MS and 1H NMR spectroscopy. The principal sterol of the mycelium was cholesta-5, 24-dienol (desmosterol) (83%), with lesser amounts of 24beta-methyl-cholesta-5,25(27)-dienol (codisterol) (2%), 24-methyldesmosterol (6%), 24(28)-methylene cholesterol (3%) and lanosterol (3%) and several other minor compounds (3%). The total sterol accounted for approximately 0.07% of the mycelial dry wt. Mycelium fed methionine-methyl-2H3 for 6 days, generated 3 2H-24-methyl(ene) sterols, [C28-2H2]24(28)-methylenecholesterol, [C28-2H3]24-methylcholesta-5,24-dienol and [C28-2H3]24beta-methyl-cholesta-5,25(27)-dienol. The formation of the 24-methyl sterols seems to be catalyzed by the direct methylation of a common Delta24-acceptor sterol thereby bypassing the intermediacy of an isomerization step for rearrangement of the Delta24(28)-bond to Delta25(25)-position as operates in Ascomycetes fungi and all plants.  相似文献   

13.
Treatment of wheat leaves with heptanoyl salicylic acid (HS) and trehalose at concentrations of 0.1 and 15 g l(-1), prior to fungal inoculation, resulted in 40% and 60% protection, respectively, against powdery mildew. The total lipid composition of Blumeria graminis f.sp. tritici (Bgt) conidia, the causal agent of wheat powdery mildew, was compared when produced on wheat leaves, respectively, untreated and treated with the two elicitors, HS and trehalose. An obvious effect was observed on lipid composition (sterol and fatty acid (FA)) of Bgt conidia produced on wheat leaves treated with HS. A total of 16 FA (C12-C24 saturated and unsaturated) as well as unusual methoxylated Fatty Acids (mFA) (3-methoxydocosanoic and 3-methoxytetracosanoic acids) were detected in the conidia. Medium chain FA were predominant in HS treated conidia (64.65%) while long chain fatty acids constituted the major compounds in untreated conidia (62%). The long chain/medium chain FA ratio decreased from 1.8 in the conidia produced on untreated leaves to 0.5 in the conidia obtained from HS treated leaves. When comparing the sterol composition of Bgt conidia produced on leaves treated with HS versus conidia obtained from untreated ones, very important changes within the two major classes can be seen. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and 24-methylcholesta-7,24-dien were reduced by about 82% whereas 24-ethylsterols, e.g., 24-ethylcholesterol and 24-ethylcholesta-5,22-dienol were increased by about 85%. The 24-methylsterols/24-ethylsterols ratio was reduced by ninefold in the conidia produced from HS treated leaves.  相似文献   

14.
Phospholipid class compositions, fatty acids and sterols of the sponges Cinachyrella alloclada and C. kükenthali from the Saudi Arabian Red Sea were studied and compared with previous results for other Cinachyrella spp. collected in Senegal (East Atlantic) and New Caledonia (West Pacific). More than 50 fatty acids were identified as methyl esters and N-acyl pyrrolidides in each phospholipid mixture by GC/MS. Six fatty acids not hitherto found in nature were identified, namely 17-methyltetracosanoic in C. kükenthali and 18-methyltetracosanoic, 18-methylpentacosanoic, 18-methylhexacosanoic, 18,24-dimethyl-hexacosanoic and 6-bromo-5,9-nonacosadienoic acids in C. alloclada. Approximately 20 Delta 5,9 unsaturated fatty acids were found, including three 6-brominated acids. The presence of bacteria was evidenced by the relatively high proportions of phosphatidylglycerol and high levels of branched short-chain fatty acids. A total of 20 free 3beta-hydroxysterols were found by GC/MS, including clerosterol in relatively high amounts and gorgosterol in low amounts. The latter sterol has not been reported to date in a sponge. Comparisons with Cinachyrella species from other geographical areas show marked differences for both phospholipid fatty acid and sterol compositions.  相似文献   

15.
The neutral lipid profiles of nine species of thin trilaminar outer wall (TLS)-containing freshwater and marine microalgae from the class of Chlorophyceae were studied with emphasis on the relationship between the lipid content and the occurrence of insoluble non-hydrolysable biopolymer (i.e. algaenan). All the freshwater microalgae produce a highly aliphatic algaenan. In sharp contrast, no algaenan was isolated from the two marine microalgae, Chlorella marina and Chlorella minutissima marina, supporting the absence of a close relationship between the presence of TLS and the occurrence of algaenan. High molecular weight straight-chain hydrocarbons (C23-C29) were identified in most of the algaenan-producing microalgae and in the algaenan-devoid C. minutissima marina, whereas only low molecular weight hydrocarbons were detected in algaenan-producing Scenedesmus subspicatus and in algaenan-devoid C. marina. Sterols, phytol and fatty alcohols were the major constituents of the polar fraction of the neutral lipids of all the microalgae investigated. High molecular weight saturated or mono-unsaturated alcohols were detected in C. emersonii and in all the microalgae belonging to the genus Scenedesmus. High amounts of saturated C30 and C32 alpha,omega-diols were also detected in S. subspicatus, S. armatus and S. pannonicus. Three classes of lipids were encountered in very small amounts in the medium polarity fraction of the neutral lipids of the microalgae investigated: (i) Monoesters composed predominantly of saturated C16 or C18 fatty acids and saturated C8, C16 or C18 alcohols and (ii) long-chain methyl ketones from C25 to C31 were detected in several species and (iii) methyl esters of fatty acids ranging from C16 to C28 were identified in all the microalgae. Attempts to use the neutral lipid composition and particularly the unusual long-chain lipids, as specific indicators of the occurrence of algaenan in TLS-containing microalgae were unsuccessful.  相似文献   

16.
Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air+0.5% CO(2) showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C(18:5), C(18:3) and C(22:6)) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH(4)-reduction) of a high proportion of 11-hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7,11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7,11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Delta(5)-3beta,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Delta(5) double bond of epi-brassicasterol and minor amounts of Delta(4)-3beta,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO(2) likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO(2), but not when grown with 0.5% CO(2). The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.  相似文献   

17.
Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application   总被引:3,自引:0,他引:3  
Dunstan GA  Brown MR  Volkman JK 《Phytochemistry》2005,66(21):2557-2570
The biochemical compositions of seven strains of marine cryptomonad and a rhodophyte were determined in logarithmic phase batch (1.4 L flask) and semi-continuous (10 L carboy) culture. Lipid ranged from 13% to 28%, protein ranged from 53% to 68%, and carbohydrate ranged from 9% to 24% of the organic weight. The major lipid classes in the species examined were polar lipids (78-88% of total lipid). The major sterol in the Cryptophyceae and the Rhodophyceae was 24-methylcholesta-5,22E-dien-3beta-ol (62-99% of total sterols); which is also the major sterol in some diatoms and haptophytes. Smaller proportions of cholest-5-en-3beta-ol (1-17.7%) were also found in the Cryptophyceae. Most cryptomonads contained high proportions of the n-3 polyunsaturated fatty acids (PUFA), 18:3n-3 (20.7-29.9% of the total fatty acids), 18:4n-3 (12.5-30.2%), 20:5n-3 (7.6-13.2%) and 22:6n-3 (6.4-10.8%). However, the blue-green cryptomonad Chroomonas placoidea was characterized by a low proportion of 22:6n-3 (0.2% of total fatty acids), and a significant proportion of 22:5n-6 (4.5%), and the presence of 24-ethylcholesta-5,22E-dien-3beta-ol (35.5% of total sterols). The fatty acid composition of the rhodophyte Rhodosorus sp. was similar to those of the Cryptophyceae except for lower proportions of 18:4n-3 and lack of C21 and C22 PUFA. It is postulated that the primary endosymbiosis of a photosynthetic n-3 C18 PUFA-producing prokaryote and a eukaryotic host capable of chain elongation and desaturation of exogenous PUFA, resulted in the Rhodophyceae capable of producing n-3 C20 PUFA. The secondary endosymbiosis of a photosynthetic n-3 C20 PUFA-producing eukaryote (such as a Rhodosorus sp. like-rhodophyte) and a eukaryotic host capable of further chain elongation and desaturation, resulted in the Cryptophyceae being capable of producing n-3 C20 and C22 PUFA de novo. Selected isolates were examined further in feeding trials with juvenile Pacific oysters (Crassostrea gigas). Rhodomonas salina CS-24(containing elevated 22:6n-3) produced high growth rates in oysters; equivalent to the microalga commonly used in aquaculture, Isochrysis sp. (T.ISO).  相似文献   

18.
A comparative study of the mycelial lipid composition of a wild strain (V35) and one unsaturated fatty acid auxotroph (UFA2) of Aspergillus niger has been performed. The lipid composition of both strains are qualitatively the same but quantitatively different. All the strains contain the following phospholipids: cardiolipin, phosphatidylethanolamine, phosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylcholine, and phosphatidylserine; and triglycerides, diglycerides, monoglycerides, ergosterol, and sterol esters as the neutral lipids; mono- and di-galactosyl diglyceride as the major glycolipids along with small amounts of the corresponding mannose analogs. Phosphatidylethanolamine and phosphatidylcholine constitute the bulk of the phospholipids. The mutant (UFA2) contains a higher level of glycerides and lower levels of sterol (both free and esterified form), phospholipids, and glycolipids than the wild type. Aspergillus niger contains C16 to C18 saturated and unsaturated fatty acids. Small amounts of long-chain (C20 to C24) and short-chain (C10 to C14) saturated and unsaturated acids are also present. Linoleic, oleic, and palmitic are the major acids, stearic and linolenic acids being minor ones. UFA2 grows only in the presence of unsaturated fatty acid (C16 or C18) and accumulates a higher concentration of supplemented acid which influences its fatty acid profile.  相似文献   

19.
Huynh LH  Do QD  Kasim NS  Ju YH 《Bioresource technology》2011,102(20):9518-9523
Neutral lipid from activated sludge (AS) as a potential source for biodiesel production has recently received considerable attentions. The utilization of useful compounds in AS may help reducing the cost of biodiesel production from AS. One of these compounds is the valuable wax esters (WEs) found in AS from a food processing company in Taiwan. About 4.13% (based on dry sludge weight) bleached wax was obtained after pretreatment and bleaching of crude sludge wax obtained from the dewaxing of crude sludge oil. The major WEs detected in the bleached wax were C46-C60 with small amounts of C37-C43 and C62 WEs. The fatty acids (FAs) and fatty alcohols (FALs) profiles of WEs were also investigated. Activated sludge WEs are mainly mixture of C14-C28 FAs and C24-C37 FALs, in which the predominant FAs are C16 and C18 while the predominant FALs are C32 and C34.  相似文献   

20.
Sterols from free sterol and steryl ester fractions from Heterodera zeae and from total lipids of Zea mays roots were analyzed by gas-liquid chromatography (GLC) and by GLC-mass spectrometry. The major free sterols of H. zeae were 24-ethylcholesterol (54.4% of total free sterol), 24-ethylcholesta-5,22-dien-3β-ol (13.3%), 24-methylcholesterol (12.5%), and cholesterol (7.2%). The same four sterols comprised 34.6%, 7.2%, 30.3%, and 18.6%, respectively, of the esterified sterols of H. zeae. Corn root sterols included 46.6% 24-ethylcholesta-5,22-dien-3β-ol, 16.7% methylcholesterol, 16.4% cycloartenol, 12.7% 24-ethylcholesterol, and 0.5% cholesterol. The sterol 24-composition of H. zeae differed greatly from that of the only other cyst nematode previously investigated, Globodera solanacearum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号