首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Among several bacterial species belonging to the general Gordonia, Mycobacterium, Micromonospora, Pseudomonas, and Rhodococcus, only two mycobacterial isolates, Mycobacterium fortuitum strain NF4 and the new isolate Mycobacterium ratisbonense strain SD4, which was isolated from a sewage treatment plant, were capable of utilizing the multiply branched hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane) and its analogous unsaturated hydrocarbon squalene as the sole carbon source for growth. Detailed degradation studies and high-pressure liquid chromatography analysis showed a clear decrease of the concentrations of squalane and squalene during biomass increase. These results were supported by resting-cell experiments using strain SD4 and squalane or squalene as the substrate. The degradation of acyclic isoprenoids and alkanes as well as of acids derived from these compounds was also investigated. Inhibition of squalane and squalene degradation by acrylic acid indicated the possible involvement of β-oxidation in the degradation route. To our knowledge, this is the first report demonstrating the biodegradation of squalane by using defined axenic cultures.  相似文献   

2.
We have isolated four strains of Rhodococcus which specifically degrade estrogens by using enrichment culture of activated sludge from wastewater treatment plants. Strain Y 50158, identified as Rhodococcus zopfii, completely and rapidly degraded 100 mg of 17β-estradiol, estrone, estriol, and ethinyl estradiol/liter, as demonstrated by thin-layer chromatography and gas chromatography-mass spectrometry analyses. Strains Y 50155, Y 50156, and Y 50157, identified as Rhodococcus equi, showed degradation activities comparable with that of Y 50158. Using the random amplified polymorphism DNA fingerprinting test, these three strains were confirmed to have been derived from different sources. R. zopfii Y 50158, which showed the highest activity among these four strains, revealed that the strain selectively degraded 17β-estradiol during jar fermentation, even when glucose was used as a readily utilizable carbon source in the culture medium. Measurement of estrogenic activities with human breast cancer-derived MVLN cells showed that these four strains each degraded 100 mg of 17β-estradiol/liter to 1/100 of the specific activity level after 24 h. It is thus suggested that these strains degrade 17β-estradiol into substances without estrogenic activity.  相似文献   

3.
We investigated the metabolic route by which a lignin tetramer-degrading mixed bacterial culture degraded two tetrameric lignin model compounds containing β—O—4 and 5—5 biphenyl structures. The α-hydroxyl groups in the propane chain of both phenolic and nonphenolic tetramers were first oxidized symmetrically in two successive steps to give monoketones and diketones. These ketone metabolites were decomposed through Cα(=O)—Cβ cleavage, forming trimeric carboxyl acids which were further metabolized through another Cα(=O)—Cβ cleavage. Dehydrodiveratric acid, which resulted from the cleavage of the carbon bonds of the nonphenol tetramer, was demethylated twice. Four metabolites of the phenolic tetramer were purified and identified. All of these were stable compounds in sterile mineral medium, but were readily degraded by lignin tetramer-degrading bacteria along the same pathway as the phenol tetramer. No monoaromatic metabolites accumulated. All metabolites were identified by mass and proton magnetic resonance spectrometry. The metabolic route by which the mixed bacterial culture degraded tetrameric lignin model compounds was different from the route of the main ligninase-catalyzed Cα—Cβ cleavage by Phanerochaete chrysosporium.  相似文献   

4.
Peptides derived from hydrolysis of αS1-casein(f1-9) [αS1-CN(f1-9)] and β-CN(f193-209) with cell extracts of Lactobacillus helveticus CNRZ32 and single-peptidase mutants (ΔpepC, ΔpepE, ΔpepN, ΔpepO, and ΔpepX) were isolated by using reverse-phase high-performance liquid chromatography and were characterized by mass spectrometry. The peptides identified suggest that there was activity of an endopeptidase, distinct from previously identified endopeptidases (PepE and PepO), with specificity for peptide bonds C terminal to Pro residues. Identification of hydrolysis products derived from a carboxyl-blocked form of β-CN(f193-209) confirmed that the peptides were derived from the activity of an endopeptidase.  相似文献   

5.
Formation of chloroplast pigments was inhibited, and free fatty acids accumulated in mustard (Brassica juncea [L.] Coss.) cotyledons and in barley (Hordeum vulgare L.) first leaves developed after treatment with 4-chloro-5- (dimethylamino)-2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone. The inhibitor reduced the amount of fatty acids found in polar lipids (galactolipids) of barley chloroplasts and increased the amount in nonpolar lipids while having little effect on total content of bound fatty acids. The inhibition of chlorophyll formation was circumvented by D-α-tocopherol acetate, phytol, farnesol, and squalene, and by unsaturated fatty acids and their methyl esters. The protective action can be explained partially by an interaction external to the plant whereby 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone partitioned out of the aqueous phase and into the lipid phase, thus limiting availability of the inhibitor to plants. However, the amount of inhibitor reaching the cotyledons of tocopherol-protected mustard seedlngs was still in excess of the amount necessary to cause white foliage, but it failed to produce the effect. Tocopherol treatment did not prevent the 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone-induced buildup of fatty acids in mustard cotyledons but did partially circumvent the effect in barley leaves. The amount of linolenic acid relative to linoleic acid was reduced in barley leaves and chloroplasts by 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone action and this effect was circumvented by tocopherol.  相似文献   

6.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.N-Carbamoyl-β-alanine amidohydrolase (NCβAA) (EC 3.5.1.6), also known as β-alanine synthase or β-ureidopropionase, catalyzes the third and final step of reductive pyrimidine degradation. In this reaction, N-carbamoyl-β-alanine or N-carbamoyl-β-aminoisobutyric acid is irreversibly hydrolyzed to CO2, NH3, and β-alanine or β-aminoisobutyric acid, respectively (43). Eukaryotic NCβAAs have been purified from several sources (10, 25, 33, 39, 42, 44). Nevertheless, only two prokaryotic NCβAAs, belonging to the Clostridium and Pseudomonas genera (4, 29), have been purified to date, although this activity has been inferred for several microorganisms due to the appearance of the reductive pathway of pyrimidine degradation (38, 45). Pseudomonas NCβAA is also able to hydrolyze l-N-carbamoyl-α-amino acids, and indeed, this activity is widespread in the bacterial kingdom (3, 23, 26, 46).β-Amino acids have unique pharmacological properties, and their utility as building blocks of β-peptides, pharmaceutical compounds, and natural products is of growing interest (14). β-Alanine, a natural β-amino acid, is a precursor of coenzyme A and pantothenic acid in bacteria and fungi (vitamin B5) (7). β-Alanine is widely distributed in the central nervous systems of vertebrates and is a structural analogue of γ-amino-n-butyric acid and glycine, major inhibitory neurotransmitters, suggesting that it may be involved in synaptic transmissions (20). Another important natural β-amino acid is taurine (2-aminoethanesulfonic acid), which plays an important role in several essential processes, such as membrane stabilization, osmoregulation, glucose metabolism, antioxidation, and development of the central nervous system and the retina (9, 28, 33). 2-Aminoethylphosphonate, the most common naturally occurring phosphonate, also known as ciliatine, is an important precursor used in the biosynthesis of phosphonolipids, phosphonoproteins, and phosphonoglycans (5). β-Homoalanine (β-aminobutyric acid) has been used successfully for the design of nonnatural ligands for therapeutic application against autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, or autoimmune uveitis (30). Substituted β-amino acids can be denominated β2, β3, and β2,3, depending on the position of the side chain(s) (R) on the amino acid skeleton (18). β2-Amino acids are not yet as readily available as their β3-counterparts, as they must be prepared using multistep procedures (17).We decided to characterize NCβAA (β-carbamoylase) from Agrobacterium tumefaciens C58 (βcarAt) after showing that some dihydropyrimidinases belonging to the Arthrobacter and Sinorhizobium genera are able to hydrolyze different 5- or 6-substituted dihydrouracils to the corresponding N-carbamoyl-β-amino acids (18, 22). If βcarAt could decarbamoylate the reaction products of dihydrouracils, different β-amino acids would be obtained enzymatically in the same way that α-amino acids are produced via the hydantoinase process (6, 21). We therefore describe the physical, biochemical, kinetic, and substrate specificity properties of recombinant βcarAt.  相似文献   

7.
Two cDNA clones, PKpα and PKpβ, for the leucoplast isozyme of pyruvate kinase have been isolated and characterized. A Southern blot of castor (Ricinus communis) DNA probed with PKpα indicates the presence of a single gene for PKp. Most (1610 base pairs) of the sequence of both cDNAs is identical. These 1610 base pairs begin with an ATG translation initiation codon, and have 248 base pairs of 3′-untranslated and 1362 base pairs of coding sequence. The sequences of the two clones 5′- to the identical regions are different but both encode peptides with a high percentage of hydrophobic amino acids. The derived sequence of PKpα encodes eight amino acid residues which have been identified as the amino-terminus of one subunit of PKp from castor seed leucoplasts when the enzyme is purified in the absence of cysteine endopeptidase inhibitors. The sequence upstream of these amino acids is possibly the transit peptide for this protein. When PKp is extracted under conditions that eliminate its proteolytic degradation, its α-subunit has a relative molecular weight equal to the full-length coding sequence of PKpα. The data indicate that the transit peptide for the subunit of leucoplast pyruvate kinase encoded by PKpα is not cleaved until the protein is released from the plastid. The derived amino acid sequences of PKpα and PKpβ are most closely related to Escherichia coli pyruvate kinase. Although the residues involved in substrate binding are conserved in leucoplast pyruvate kinase, there is no phosphorylation site and only 5 of 15 amino acids in the E. coli fructose-1,6-bisphosphate binding site are conserved.  相似文献   

8.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.  相似文献   

9.
The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be essential for flavor development. Cystathionine β-lyase (CBL) can convert cystathionine to homocysteine but is also able to catalyze an α,γ elimination. With methionine as a substrate, it produces volatile sulfur compounds which are important for flavor formation in Gouda cheese. The metC gene, which encodes CBL, was cloned from the Lactococcus lactis model strain MG1363 and from strain B78, isolated from a cheese starter culture and known to have a high capacity to produce volatile compounds. The metC gene was found to be cotranscribed with a downstream cysK gene, which encodes a putative cysteine synthase. The MetC proteins of both strains were overproduced in strain MG1363 with the NICE (nisin-controlled expression) system, resulting in a >25-fold increase in cystathionine lyase activity. A disruption of the metC gene was achieved in strain MG1363. Determination of enzymatic activities in the overproducing and knockout strains revealed that MetC is essential for the degradation of cystathionine but that at least one lyase other than CBL contributes to methionine degradation via α,γ elimination to form volatile aroma compounds.  相似文献   

10.
The host-specific toxin of Helminthosporium carbonum (C32H50N6O10) was hydrolyzed by 6 n HCl to yield a number of α-amino acids. The common amino acids, proline and alanine, occurred in a ratio of 1:2. Two other unstable α-amino acids that produced lower color values with ninhydrin were also produced. One of these was tentatively identified as 2-amino-2,3-dehydro-3-methylpentanoic acid by electrolytic reduction to isoleucine. Additional ninhydrin-reacting substances were produced in low yield and probably represented secondary hydrolysis products of the unstable amino acids. The finding of an α,β-unsaturated linkage in H. carbonum toxin explains the instability of the compound and may also account for its specific toxicity.  相似文献   

11.
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3,4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-13C]naphthalene or deuterated D8-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [13C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, 13C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.  相似文献   

12.
Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases.  相似文献   

13.
Decarboxylation rates for a series of C-3 to C-6 α-keto acids were determined in the presence of resting cells and cell-free extracts of Streptococcus lactis var. maltigenes. The C-5 and C-6 acids branched at the penultimate carbon atom were converted most rapidly to the respective aldehydes in the manner described for α-carboxylases. Pyruvate and α-ketobutyrate did not behave as α-carboxylase substrates, in that O2 was absorbed when they were reacted with resting cells. The same effect with pyruvate was noted in a nonmalty S. lactis, accounting for CO2 produced by some “homofermentative” streptococci. Mixed substrate reactions indicated that the same enzyme was responsible for decarboxylation of α-ketoisocaproate and α-ketoisovalerate, but it appeared unlikely that this enzyme was responsible for the decarboxylation of pyruvate. Ultrasonic disruption of cells of the malty culture resulted in an extract inactive for decarboxylation of pyruvate in the absence of ferricyanide. Dialyzed cell-free extracts were inactive against all keto acids and could not be reactivated.  相似文献   

14.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

15.
Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further degradation by proteinase of L. helveticus PR4 or by trypsin and chymotrypsin.  相似文献   

16.
From the rat intestinal microflora we isolated a gram-positive rod, termed HDCA-1, that is a member of a not previously described genomic species and that is able to transform the 3α,6β,7β-trihydroxy bile acid β-muricholic acid into hyodeoxycholic acid (3α,6α-dihydroxy acid) by dehydroxylation of the 7β-hydroxy group and epimerization of the 6β-hydroxy group into a 6α-hydroxy group. Other bile acids that were also transformed into hyodeoxycholic acid were hyocholic acid (3α,6α,7α-trihydroxy acid), α-muricholic acid (3α,6β,7α-trihydroxy acid), and ω-muricholic acid (3α,6α,7β-trihydroxy acid). The strain HDCA-1 could not be grown unless a nonconjugated 7-hydroxylated bile acid and an unidentified growth factor produced by a Ruminococcus productus strain that was also isolated from the intestinal microflora were added to the culture medium. Germfree rats selectively associated with the strain HDCA-1 plus a bile acid-deconjugating strain and the growth factor-producing R. productus strain converted β-muricholic acid almost completely into hyodeoxycholic acid.  相似文献   

17.
Gibberellin A1 (GA1), 3-epi-GA1, GA4, GA9, 11α-hydroxyGA12, 12α-hydroxyGA12, GA15, GA17, GA19, GA20, GA25, GA37, GA40, GA58, GA69, GA70, and GA71 have been identified from Kovats retention indices and full scan mass spectra by capillary GC-MS analyses of purified extracts from sporophytes of the tree fern, Cibotium glaucum. Abscisic acid, dihydrophaseic acid, an epimer of 4′-dihydrophaseic acid, and the epimeric ent-6α, 7α, 16α, 17-(OH)4 and ent-6α, 7α, 16β, 17-(OH)4 derivatives of ent16, 17-dihydrokaurenoic acid, in addition to the epimeric 16α, 17- and 16β, 17-dihydroxy-16, 17-dihydro derivatives of GA12, were also identified in extracts of C. glaucum. An oxodihydrophaseic acid and a hydroxydihydrophaseic acid were also detected. In extracts of sporophytes of Dicksonia antarctica, GA4, GA9, 12α- and 12β-hydroxyGA12, GA15, GA25, and GA37 were identified by the same criteria, as well as abscisic acid, phaseic acid, 8′-hydroxymethylabscisic acid and dihydrophaseic acid. This is the first time that GA40 has been identified in a higher plant; it is also the first report of the natural occurrence of the two gibberellins, 11α- and 12β-hydroxyGA12. The total gibberellin (GA) content in C. glaucum (tall) was at least one order of magnitude greater than that of D. antarctica (dwarf) based on total ion current response in GC-MS and bioassay data. Abscisic acid was a major component of D. antarctica and the oxodihydrophaseic acid was a major component of C. glaucum.  相似文献   

18.
Comamonas testosteroni TA441 degrades steroids such as testosterone via aromatization of the A ring, followed by meta-cleavage of the ring. In the DNA region upstream of the meta-cleavage enzyme gene tesB, two genes required during cholic acid degradation for the inversion of an α-oriented hydroxyl group on C-12 were identified. A dehydrogenase, SteA, converts 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α-hydroxyandrosta-1,4-diene-3,12,17-trione, and a hydrogenase, SteB, converts the latter to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione. Both enzymes are members of the short-chain dehydrogenase/reductase superfamily. The transformation of 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione is carried out far more effectively when both SteA and SteB are involved together. These two enzymes are encoded by two adjacent genes and are presumed to be expressed together. Inversion of the hydroxyl group at C-12 is indispensable for the subsequent effective B-ring cleavage of the androstane compound. In addition to the compounds already mentioned, 12α-hydroxyandrosta-1,4,6-triene-3,17-dione and 12β-hydroxyandrosta-1,4,6-triene-3,17-dione were identified as minor intermediate compounds in cholic acid degradation by C. testosteroni TA441.  相似文献   

19.
Partially purified cell wall proteinases of eight strains of Streptococcus cremoris were compared in their action on bovine αs1-, β-, and κ-casein, as visualized by starch gel electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thin-layer chromatography. Characteristic degradation profiles could be distinguished, from which the occurrence of two proteinases, represented by strain HP and strain AM1, was concluded. The action of the HP-type proteinase P1 (also detectable in strains Wg2, C13, and TR) was established by electrophoretic methods to be directed preferentially towards β-casein. The AM1-type proteinase PIII (also detectable in strain SK11) was also able to degrade β-casein, but at the same time split αs1- and κ-casein more extensively than did PI. Strain FD27 exhibited mainly PI activity but also detectable PIII degradation characteristics. The cell wall proteinase preparation of strain E8 showed low PI as well as low PIII activity. All proteinase preparations produced from κ-casein positively charged degradation products with electrophoretic mobilities similar to those of degradation products released by the action of the milk-clotting enzyme chymosin. The differences between PI and PIII in mode of action, as detected by gel electrophoresis and thin-layer chromatography, were reflected by the courses of the initial degradation of methyl-14C-labeled β-casein and by the effect of αs1- plus κ-casein on these degradations. The results are discussed in the light of previous comparative studies of cell wall proteinases in strains of S. cremoris and with respect to the growth of this organism in milk.  相似文献   

20.
Nonvolatile residue (NVR), a waste stream from the manufacture of nylon 6′6′, contains mainly small carboxylic acids and alcohols, making it a potential fermentation substrate. Above a concentration of 1.3% (wt/vol), NVR inhibited the growth of all microorganisms tested. The most inhibitory of the major NVR components were the monocarboxylic acids (C4 to C6) and ε-caprolactone. The inhibitory effects of NVR could be avoided by using a carbon-limited chemostat. Microorganisms were found that could use all of the major NVR components as carbon and energy sources. One such organism, Pseudomonas cepacia, was grown in a carbon-limited chemostat with a medium feed concentration of 20.5 g of NVR liter−1. At a dilution rate of 0.14 h−1 the yield of biomass (Yx/s, where x is biomass produced and s is substrate used) from NVR was 18% (neglecting the water content of NVR). It was concluded that NVR would be a suitable carbon source for certain industrial fermentation processes such as the production of poly-β-hydroxybutyric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号