首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
单感器记录技术是一种昆虫细胞外电生理技术,可以测量昆虫单个感受器对刺激物的电生理反应。该技术有助于探明昆虫嗅觉和味觉感受器对不同信息化合物的电生理响应机制,将单感器记录技术与其他技术相结合,不仅可以阐明昆虫嗅觉反应的分子机制,还可以研制昆虫行为调节剂、检测挥发性有机化合物的生物传感器。本文介绍了单感器记录仪的结构和昆虫单感器记录的原理,并对单感器记录技术在昆虫学研究方面的应用进行了综述,以期为探明昆虫感受化学信息物质的机理和应用提供依据。  相似文献   

2.
昆虫的化学感觉机理   总被引:18,自引:0,他引:18  
昆虫是通过化学感觉器与其周围环境中的大量化学信息发生联系的。通过特定的化学感觉机制 ,昆虫可感知来自种内和种间 ,以及无机环境中的各种化学信息 ,并由此而作出相应的行为反应 ,从而为其自身寻找适宜的食物、配偶以及生存与繁殖场所 (如躲避天敌、避免或减少竞争等等 ) ,达到最大的繁殖成功。阐明昆虫的化学感觉机理 ,不仅可在理论上进一步加深对昆虫与植物、昆虫与昆虫相互关系的了解 ,而且可在实践上为开发害虫治理的新途径提供理论指导。本文将根据目前的最新研究成果 ,主要就昆虫的化学感觉机理 ,包括嗅觉和味觉机理作一综述 ,以期…  相似文献   

3.
七星瓢虫成虫下颚须上的化学感受器   总被引:9,自引:0,他引:9  
七星瓢虫成虫下颚须端节的内侧是一个船背形隆起的平面, 其上着生栓锥形化学感受器约1, 500个, 其中一半左右是味觉感受器, 其余为嗅觉感受器.每一个味觉感受器小体内, 有感受细胞4—8个, 它们的树突远区通过感橛腔时, 或处于同一个感橛腔中, 或在2个感橛腔中, 或在3个感橛腔中.每一个嗅觉感受器小体内, 感受细胞的数目恒为3个, 有限大的感受器淋巴腔.感橛较薄, 终止于栓锥腔的基部.树突在栓锥腔内分枝.栓锥的顶部有许多半球状突起.下颚须内所具有的感受细胞比下唇须内所具有的超百倍之多, 由取食时下颚须的动作来判断, 它们的主要作用在于寻找和试探食物.  相似文献   

4.
昆虫感觉气味的细胞与分子机制研究进展   总被引:1,自引:1,他引:0  
张龙 《昆虫知识》2009,46(4):509-517
昆虫作为地球上最为成功的类群,已经成功地进化了精细的化学感受系统,通过化学感受系统适应各种复杂的环境,保持种群的繁荣。自1991年在动物中发现嗅觉受体基因以来,关于昆虫感受化学信息的周缘神经系统的分子和细胞机制方面的进展十分迅速。文章主要就昆虫周缘神经系统的感受化学信息的分子和细胞机制进行综述。首先对昆虫感觉气味的细胞机制的研究进展进行简要介绍。昆虫嗅觉神经元在感受化学信息过程中起着极为重要的作用,昆虫嗅觉神经元上表达的嗅觉受体不同而执行着各异的功能。各种嗅觉神经元对于化学信息的感受谱有较大的区别;嗅觉神经元对化学信息类型、浓度、流动动态等产生相应的电生理特征反应。研究表明同一种神经原可以感受多种化学信息,而一种化学信息也可以被多种神经原所感受。由神经原对化学信息感受所形成的特征组合就是感受化学信息的编码。其次较为详细地论述与昆虫感受气味分子相关的一些蛋白质的研究进展。气味分子结合蛋白是一类分子量较小、水溶性的蛋白,主要位于化学感受器神经原树突周围的淋巴液中。在结构上的主要特征是具有6个保守的半光氨酸和由6个α螺旋组成的结合腔。自1981年发现以来,已经在40余种昆虫中发现上百种。由于研究手段的不断进步,已经对该类蛋白的表达特征、结合特性以及三维结构和结合位点进行了大量的研究,提出了多个可能的功能假说,在诸多的假说中,较为广泛接受的是气味分子结合蛋白在昆虫感觉气味的过程中,是与疏水性的气味分子相结合,并将气味分子运输到嗅觉神经原树突膜上的嗅觉受体上。这些处于树突膜上的嗅觉受体则是昆虫感觉气味过程中的另一个十分重要的蛋白质。目前,已经在果蝇、按蚊、蜜蜂和家蚕等10余个昆虫种类中发现上百个嗅觉受体蛋白基因。这类蛋白是跨膜蛋白,一般具有7个跨膜区,整个蛋白的氨基酸残基在400~600个。昆虫的嗅觉受体蛋白的N-端在胞内,而C-端在胞外,这与G耦联蛋白不同。而且,昆虫的一个嗅觉神经元可以表达1~3个嗅觉受体蛋白,也与哺乳动物的一个神经元只表达一种受体蛋白有所不同。每种嗅觉受体可以感受多种气味分子,而一种气味分子可以被多个嗅觉受体所感知,这样组成了感受化学信息的编码谱。最近采用基因敲除技术和膜片钳技术研究发现,昆虫的嗅觉受体蛋白在信号传导中也有特殊性,即嗅觉受体可以直接作为离子通道,而引起动作电位。还有近来的研究表明,神经膜蛋白对于果蝇的性信息素感受神经元感受性信息素cVA是必要的。实际上,昆虫对于化学信息的感受和信号的转导,并不是上述蛋白单独起作用完成的,而是多种蛋白相互作用的结果。论文最后对该领域研究内容进行了展望。  相似文献   

5.
马尾松毛虫雄蛾触角毛状感受器的细微结构   总被引:6,自引:0,他引:6  
马尾松毛虫Dendrolimus punctagus(Walker)雄蛾有一对羽毛状触角。在触角鞭节的每对侧枝的内侧(迎风面)着生许多毛状感受器。每个毛状感受器由几丁质表皮毛及位于其下的三个感觉神经原和三个呈同心排列的辅助细胞-鞘原细胞、毛原细胞和膜原细胞构成。几丁质表皮毛上有许多孔。毛腔内充满感受器淋巴液。感觉神经原发出的树状突伸入毛腔,浸浴于感受器淋巴液内。这些结构特征表明它是一种司嗅觉的化学感受器。雄蛾终生不取食,推断它的嗅觉感受器主要用以感受雌蛾释放的性外激素,帮助寻找配偶。  相似文献   

6.
马尾松毛虫雄蛾触角毛状感受器的细微结构   总被引:1,自引:0,他引:1  
马尾松毛虫Dendrolimuspunctatus(Walker)雄蛾有一对羽毛状触角。在触角鞭节的每对侧枝的内侧(迎风面)着生许多毛状感受器。每个毛状感受器由几丁质表皮毛及位于其下的三个感觉神经原和三个呈同心排列的辅助细胞──鞘原细胞、毛原细胞和膜原细胞构成。几丁质表皮毛上有许多孔。毛腔内充满感受器淋巴液。感觉神经原发出的树状突伸入毛腔,浸浴于感受器淋巴液内。这些结构特征表明它是一种司嗅觉的化学感受器。雄蛾终生不取食,推断它的嗅觉感受器主要用以感受雌蛾释放的性外激素,帮助寻找配偶  相似文献   

7.
昆虫对宿主植物的嗅觉定向   总被引:3,自引:0,他引:3  
雷宏 《生物学通报》1995,30(3):9-11
在混虫辨别宿主植物所利用的各种信息中,植物的气味是一个很重要的因素昆虫利用触角上的嗅觉感受器来感觉植物气味。触角电位是昆虫的触角感受到植物气味后所产生的神经反应,而嗅觉编码则是嗅觉感受器将植物的气味信息传至神经中枢的脉冲系列。本文从行为生理学的角度介绍了昆虫利用植物气味寻找宿主植物的过程。  相似文献   

8.
昆虫嗅觉感受细胞电反应计算机数据分析   总被引:3,自引:0,他引:3  
吴锋  吴才宏 《昆虫学报》1996,39(4):437-440
昆虫嗅觉感受细胞电反应计算机数据分析吴锋,吴才宏(北京志同电子公司北京100080)(北京大学生命科学学院北京100871)昆虫触角电位和单个嗅觉感受细胞电反应记录已成为研究昆虫性信息素及化学通讯机制的重要手段。实验中要记录和分析处理大量数据。在所记...  相似文献   

9.
昆虫嗅觉相关蛋白及嗅觉识别机理研究概述   总被引:1,自引:0,他引:1  
嗅觉是昆虫产生行为的基础之一,在长期进化的过程中昆虫形成了复杂的嗅觉系统,完成这一过程,需要有多种与嗅觉相关的蛋白参与,包括气味结合蛋白、化学感受蛋白、气味受体和感觉神经元膜蛋白等。了解昆虫感受外界信息的嗅觉机制可以帮助我们更好地理解昆虫识别配偶、天敌及寻找食物来源、产卵场地等行为特征,为进一步调控昆虫的行为、防控害虫侵袭、保护和利用有益昆虫奠定基础。本文综述了昆虫嗅觉相关的几类重要蛋白的生化特性和生理功能,并对昆虫气味分子的识别机制、气味分子在昆虫体内运输机制的最新研究进展进行了概述。  相似文献   

10.
昆虫嗅觉受体的研究进展   总被引:5,自引:2,他引:3  
昆虫的嗅觉对昆虫的栖息地选择、觅食、群集、趋避、繁殖以及信息传递等行为具有重要的影响。对昆虫嗅觉机理的深入研究和嗅觉信号传导途径的完整阐述,是探索农业害虫的专一性防治的基础。嗅觉受体(olfactory receptors,Ors)是G蛋白偶联受体(G protein-coupled receptor)的一种,是嗅觉系统的关键成分。近年来嗅觉受体的研究日益受到关注。本文对昆虫嗅觉的基本过程、基因结构和表达调控特征、蛋白分子结构、生理功能、分布部位和相关配体的研究等进行了综述。  相似文献   

11.
As an introduction to a symposium of nematode chemoreception, the anatomy of nematode chemosensilla, their distribution on plant parasitic nematodes, and their possible functional roles is briefly reviewed. Comparison of nematode chemosensilla with those of other animals shows their greater resemblance to olfactory primary sense cells of vertebrates. Although the sensory process is obviously derived from a cilium, the absence of many ciliary features is noted. Retention of the ciliary necklace may be important functionally. A simple model is proposed, wherein binding of stimulant molecules to receptors in the membrane of the cilium-derived process results in entry of Na⁺ and Ca⁺⁺ (the latter via the ciliary necklace) to produce a receptor potential that spreads along the dendrite to the cell body where action potentials continue along the short axon to synapses.  相似文献   

12.
Abstract. Larvae of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) were reared on artificial diet, fresh cut corn, or switched from diet to corn for 5 days prior to tip recording. Electrophysiological responses to a standard mixed chemical stimulus were obtained from the galeal uniporous chemosensilla of the early fifth-stadium larvae. Mouthparts of some larvae were briefly treated with protease, then recorded again. Larvae were then processed for scanning electron microscopy (SEM) of chemosensilla terminal pores. Spike:noise ratios were significantly higher for corn-reared, switched-to-corn, and protease- treated larvae, relative to diet-reared larvae. Morphology of the chemo- sensilla terminal pores, as assessed by SEM, reveals that apparent occlusion of the pore tip is significantly greater for diet-reared larvae relative to the other groups. The data suggest an association between quality of the electrophysiological recordings and physical blockage of the terminal sensillum pore. These data should serve as a caveat for those engaged in chemosensory studies of insect herbivores.  相似文献   

13.
Chemosensory receptors convert an enormous diversity of chemical signals from the external world into a common language of electrical activity in the brain. Mammals and insects use several families of transmembrane receptor proteins to recognize distinct classes of volatile and non‐volatile chemicals that are produced by conspecifics or other environmental sources. A comparison of the signalling mechanisms of mammalian and insect receptors has revealed an unexpected functional distinction: mammals rely almost exclusively on metabotropic ligand‐binding receptors, which use second messenger signalling cascades to indirectly activate ion channels, whereas insects use ionotropic receptors, which are gated directly by chemical stimuli, thereby leading to neuronal depolarization. In this review, we consider possible reasons for this dichotomy, taking into account biophysical, cell biological, ecological and evolutionary influences on how information is extracted from chemosensory cues by these animal classes.  相似文献   

14.
The number and distribution of chemosensilla located on different organs of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) males and females are described based on observations using scanning electron microscopy, selective staining with silver nitrate, and gustatory electrophysiological recording. The antennae and the fifth tarsomere of the prothoracic legs of both sexes bear chemosensilla: uniporous chaetica and multiporous trichoidea sensilla. However, there is a sexual dimorphism in the number and size of sensilla on these organs. The distal part of the ovipositor has uniporous gustatory chemosensilla of the chaetica type. The involvement of these sensilla in oviposition site selection by B. fusca is discussed.  相似文献   

15.
While chemical communication has been investigated intensively in vertebrates and insects, relatively little is known about the sensory world of spiders despite the fact that chemical cues play a key role in natural and sexual selection in this group. In insects, olfaction is performed with wall–pore and gustation with tip-pore sensilla. Since spiders possess tip-pore sensilla only, it is unclear how they accomplish olfaction. We scrutinized the ultrastructure of the trichoid tip-pore sensilla of the orb weaving spider Argiope bruennichi—a common Palearctic species the males of which are known to be attracted by female sex pheromone. We also investigated the congener Argiope blanda. We examined whether the tip-pore sensilla differ in ultrastructure depending on sex and their position on the tarsi of walking legs of which only the distal parts are in contact with the substrate. We hypothesized as yet undetected differences in ultrastructure that suggest gustatory versus olfactory functions. All tarsal tip-pore sensilla of both species exhibit characters typical of contact-chemoreceptors, such as (a) the presence of a pore at the tip of the sensillum shaft, (b) 2–22 uniciliated chemoreceptive cells with elongated and unbranched dendrites reaching up to the tip-pore, (c) two integrated mechanoreceptive cells with short dendrites and large tubular bodies attached to the sensillum shaft's base, and (d) a socket structure with suspension fibres that render the sensillum shaft flexible. The newly found third mechanoreceptive cell attached to the proximal end of the peridendritic shaft cylinder by a small tubular body was likely overlooked in previous studies. The organization of tarsal tip-pore sensilla did not differ depending on the position on the tarsus nor between the sexes. As no wall-pore sensilla were detected, we discuss the probability that a single type of sensillum performs both gustation and olfaction in spiders.  相似文献   

16.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour.  相似文献   

17.
Phytoecdysteroids are steroidal compounds produced by various plants that disrupt growth and development of insects eating them. They exhibit an insecticidal activity on a number of insect pests such as Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). In this study, we further evaluated whether phytoecdysteroids deter larvae of this species from feeding, by using four phytoecdysteroid molecules, commonly occurring in plants: 20‐hydroxyecdysone (20E), ponasterone A (PonA), polypodine B (PolB), and makisterone A (MakA). Fourth instar P. interpunctella avoided contact with food pellets treated with these phytoecdysteroids in a dose‐dependent way (2–30 mm ). In order to test whether this avoidance was mediated by taste sensitivity, we recorded the responses of taste neurons located in the lateral and medial sensilla styloconica of the galea. At least one neuron responded to each of these compounds in both sensilla. The neuron located in the medial sensillum had a detection threshold of 10?6 m for PonA, 10?4 m for 20E and PolB, and 10?3 m for MakA. The lateral sensillum neuron responded with less intensity and its detection threshold was 10 times higher than that of the medial sensillum neuron. These results indicate that phytoecdysteroids are detected as deterrent stimuli by P. interpunctella larvae and that small structural differences significantly affect their biological activity.  相似文献   

18.
The Asian long‐horned beetle (ALB) is one of the most important international trunk‐boring insect pests of forest trees, which has caused enormous losses in the forests of China, the USA and some countries in Europe. To investigate the morphology of the antennal, maxillary palp and labial palp sensilla in the five larval instars of the ALB, scanning electron microscopy was used to determine the typology, morphology, number and distribution of the sensilla. The antennae had two types of sensilla: the sensilla twig basiconica (s.t.b.) and sensilla basiconica. Three different types of sensilla were observed on the maxillary palps, which were the sensilla digitiformia, the sensilla chaetica and the s.t.b. The labial palps had two types of sensilla: the sensilla chaetica and the s.t.b. The s.t.b. had seven total subtypes, and the sensilla basiconica had two subtypes. The typology, quantity and distribution of sensilla on the antennae, maxillary palps and labial palps remained constant in the five larval instars, but the dimensions of all sensilla types increased throughout the development. We discussed the mechanoreception and the chemoreception of ALB larvae inside the host tree to provide a theoretical understanding and information for further research on the behaviour and the electrophysiology of this devastating forest pest.  相似文献   

19.
Antennae of the wheat stink bug Eurygaster maura L. (Hemiptera: Scutelleridae) were investigated to elucidate structure and distribution of antennal chemosensilla in females. Five type of sensilla were identified and characterized using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Type 1 sensilla are mechanical and contact chemoreceptors with a single apical pore. Types 2 and 3 sensilla are multiporous chemoreceptors both with typical features of olfactory sensilla. Type 4 are multiporous peg-like sensilla, short and with a grooved surface. Type 5 are sensilla coeloconica with a smooth and aporous peg completely inserted in a sub-cuticular chamber. All types are distributed on the two flagellar segments, but we considered only the apical flagellomere in which the largest number of sensilla are located. The most abundant sensilla are type 3, while the less numerous are type 5. All types, except type 2, decreased in number from the tip to the base of the segment. The lower density of sensilla was recorded on the dorsal-internal part of the apical antennomere, while the higher density was recorded on the opposite side (external-ventral).  相似文献   

20.
ABSTRACT. The contributions of olfactory and gustatory organs in food plant discrimination were examined in larvae of Manduca sexta (Johan.) (Lepidoptera, Sphingidae). Larvae, from which various chemosensory organs had been removed surgically, were tested for feeding preferences for a host, tomato ( Lycopersicon esculentum ); a weakly acceptable non-host, rape ( Brassica napus ); and an unacceptable non-host canna ( Canna generalis ), using a two-choice disc bioassay.
Removal of all known chemosensory organs resulted in failure to show discriminatory behaviour in a strictly chemosensory bioassay, indicating that all external chemosensory organs have been accounted for. The involvement of non-chemosensory organs results in residual discrimination for leaves by individuals with total chemosensory ablations.
Larvae possessing either olfactory or gustatory organs still exhibit normal preferences for tomato over rape. Gustatory (but not olfactory) organs are required for larvae to show normal preferences for tomato over canna; in fact, olfactory organs do not appear to participate in this decision.
To examine which if any of the plant species is being selected in two-choice tests, larvae were given a choice between each leaf species and a 'neutral' substance (wet filter paper). Both olfactory and gustatory organs are required for normal preferences for tomato, but either alone will suffice for rape. Only gustation is needed to select canna, and participation of either the epipharyngeal sensilla or a single medial sensillum styloconicum is sufficient to elicit complete rejection behaviour.
We conclude that, in larvae of M. sexta , the complement of chemosensory organs needed for food plant discrimination varies with the plant species sampled. Evidence is presented exposing a potential artefact of ablation experiments; extirpation of one sensory organ may affect the functioning of others nearby, even though they may appear normal by visual inspection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号