首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
Genetic tools for cyanobacteria   总被引:10,自引:0,他引:10  
  相似文献   

4.
Toolboxes for cyanobacteria: Recent advances and future direction   总被引:1,自引:0,他引:1  
Photosynthetic cyanobacteria are important primary producers and model organisms for studying photosynthesis and elements cycling on earth. Due to the ability to absorb sunlight and utilize carbon dioxide, cyanobacteria have also been proposed as renewable chassis for carbon-neutral “microbial cell factories”. Recent progresses on cyanobacterial synthetic biology have led to the successful production of more than two dozen of fuels and fine chemicals directly from CO2, demonstrating their potential for scale-up application in the future. However, compared with popular heterotrophic chassis like Escherichia coli and Saccharomyces cerevisiae, where abundant genetic tools are available for manipulations at levels from single gene, pathway to whole genome, limited genetic tools are accessible to cyanobacteria. Consequently, this significant technical hurdle restricts both the basic biological researches and further development and application of these renewable systems. Though still lagging the heterotrophic chassis, the vital roles of genetic tools in tuning of gene expression, carbon flux re-direction as well as genome-wide manipulations have been increasingly recognized in cyanobacteria. In recent years, significant progresses on developing and introducing new and efficient genetic tools have been made for cyanobacteria, including promoters, riboswitches, ribosome binding site engineering, clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease (CRISPR/Cas) systems, small RNA regulatory tools and genome-scale modeling strategies. In this review, we critically summarize recent advances on development and applications as well as technical limitations and future directions of the genetic tools in cyanobacteria. In addition, toolboxes feasible for using in large-scale cultivation are also briefly discussed.  相似文献   

5.
The ethylene-forming enzyme (EFE) from Pseudomonas syringae catalyzes the synthesis of ethylene which can be easily detected in the headspace of closed cultures. A synthetic codon-optimized gene encoding N-terminal His-tagged EFE (EFEh) was expressed in Synechocystis sp. PCC 6803 (Synechocystis) and Escherichia coli (E. coli) under the control of diverse promoters in a self-replicating broad host-range plasmid. Ethylene synthesis was stably maintained in both organisms in contrast to earlier work in Synechococcus elongatus PCC 7942. The rate of ethylene accumulation was used as a reporter for protein expression in order to assess promoter strength and inducibility with the different expression systems. Several metal-inducible cyanobacterial promoters did not function in E. coli but were well-regulated in cyanobacteria, albeit at a low level of expression. The E. coli promoter Ptrc resulted in constitutive expression in cyanobacteria regardless of whether IPTG was added or not. In contrast, a Lac promoter variant, PA1lacO-1, induced EFE-expression in Synechocystis at a level of expression as high as the Trc promoter and allowed a fine level of IPTG-dependent regulation of protein-expression. The regulation was tight at low cell density and became more relaxed in more dense cultures. A synthetic quorum-sensing promoter system was also constructed and shown to function well in E. coli, however, only a very low level of EFE-activity was observed in Synechocystis, independent of cell density.  相似文献   

6.
7.
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.  相似文献   

8.
Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid phase calcium. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of solid phase calcium was produced. Creation of an alkaline growth environment catalyzed by the physiology of the cyanobacteria appeared to be the primary factor responsible for CaCO3 precipitation in these experiments.  相似文献   

9.
10.
Ecosystems of rice paddies are good sources of new strains of heterocyst-forming cyanobacteria that can be used in biotechnological systems for production of photohydrogen. The morphological and physiological properties of two novel epiphytic strains of cyanobacteria, Anabaena sp. 182 and Anabaena sp. 281, were studied. DNA typing of these strains based on PCR amplification of hydrogenase-encoding genes and DNA analysis using RAPD and Rep primers was carried out. The properties of the genome of strain Anabaena sp. 281 differed considerably from those of two reference strains (Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120) with sequenced genomes, whereas strain Anabaena sp. 182 was found to be a close relative of A. variabilis ATCC 29413. Due to a number of physiological and biochemical advantages, Anabaena sp. 182 may be considered a new promising model for molecular and genetic engineering studies aimed at the development of H2 producers.  相似文献   

11.
Cyanobacteria play a major role as direct producers of biofuels, such as ethanol and butanol, with the aid of genetic engineering. However, development of a new harvesting-technology is essential to achieve economic viability of biofuel production from cyanobacteria. In this study, we demonstrated the feasibility of harvesting the unicellular cyanobacterium Synechocystis sp. PCC 6803 using pre-made filamentous fungal pellets and investigated key factors affecting efficiency of harvest, including fungal strain, pellet quantity (number of pellets), initial pH, and organic carbon source. Synechocystis sp. PCC 6803 cells attached to Aspergillus oryzae pellets, indicating that this fungal pellet had a desirable harvesting effect, while Rhizopus oryzae pellets had no effect on harvesting. Increasing pellet quantity and adding organic carbon sources, such as glucose and xylose, improved the harvesting efficiency of Aspergillus oryzae pellet; efficiency was not affected by the initial pH.  相似文献   

12.
13.
Due to their capability of photosynthesis and autotrophic growth, cyanobacteria are currently investigated with regard to the sustainable production of a wide variety of chemicals. So far, however, no attempt has been undertaken to engineer cyanobacteria for the biotechnological production of vitamins, which is probably due to the light-sensitivity of many of these compounds. We now describe a photoautotrophic bioprocess to synthesize riboflavin, a vitamin used as a supplement in the feed and food industry. By overexpressing the riboflavin biosynthesis genes ribDGEABHT from Bacillus subtilis in the marine cyanobacterium Synechococcus sp. PCC 7002 riboflavin levels in the supernatant of the corresponding recombinant strain increased 56-fold compared to the wild-type. Introduction of a second promoter region upstream of the heterologous ribAB gene – coding for rate-limiting enzymatic functions in the riboflavin biosynthesis pathway – led to a further increase of riboflavin levels (211-fold compared to the wild-type). Degradation of the light-sensitive product riboflavin was prevented by culturing the genetically engineered Synechococcus sp. PCC 7002 strains in the presence of dichromatic light generated by red light-emitting diodes (λ = 630 and 700 nm). Synechococcus sp. PCC 7002 naturally is resistant to the toxic riboflavin analog roseoflavin. Expression of the flavin transporter pnuX from Corynebacterium glutamicum in Synechococcus sp. PCC 7002 resulted in roseoflavin-sensitive recombinant strains which in turn could be employed to select roseoflavin-resistant, riboflavin-overproducing strains as a chassis for further improvement.  相似文献   

14.
《BBA》2022,1863(7):148580
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green?sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.  相似文献   

15.
16.
Because cyanobacteria are photosynthetic, fast-growing microorganisms that can accumulate sucrose under salt stress, they have a potential application as a sugar source for the biomass-derived production of renewable fuels and chemicals. In the present study, the production of sucrose by the cyanobacteria Synechocystis sp. PCC6803, Synechococcus elongatus PCC7942, and Anabaena sp. PCC7120 was examined. The three species displayed different growth curves and intracellular sucrose accumulation rates in response to NaCl. Synechocystis sp. PCC6803 was used to examine the impact of modifying the metabolic pathway on the levels of sucrose production. The co-overexpression of sps (slr0045), spp (slr0953), and ugp (slr0207) lead to a 2-fold increase in intracellular sucrose accumulation, whereas knockout of ggpS (sll1566) resulted in a 1.5-fold increase in the production of this sugar. When combined, these genetic modifications resulted in a fourfold increase in intracellular sucrose accumulation. To explore methods for optimizing the transport of the intracellular sucrose to the growth medium, the acid-wash technique and the CscB (sucrose permease)-dependent export method were evaluated using Synechocystis sp. PCC6803. Whereas the acid-wash technique proved to be effective, the CscB-dependent export method was not effective. Taken together, these results suggest that using genetic engineering, photosynthetic cyanobacteria can be optimized for efficient sucrose production.  相似文献   

17.
《Process Biochemistry》2014,49(12):2071-2077
Lactate is an important industrial material with numerous potential applications, and its production from carbon dioxide is very attractive. d-Lactate is an essential monomer for production of thermostable polylactide. The photoautotrophic prokaryote cyanobacterium Synechocystis sp. PCC 6803 represents a promising host for biosynthesis of d-lactate from CO2 as it only contains d-lactate dehydrogenase. The production of d-lactate from CO2 by an engineered strain of Synechocystis sp. PCC 6803 with overexpressing d-lactate dehydrogenase and a soluble transhydrogenase has been reported recently. Here, we report an alternative engineering strategy to produce d-lactate from CO2. This strategy involves blocking two competitive pathways, the native poly-3-hydroxybutyrate and acetate pathways from the acetyl-CoA node, and introducing a more efficient d-lactate dehydrogenase into Synechocystis sp. PCC 6803. The engineered strain of Synechocystis sp. PCC 6803 was capable of producing 1.06 g/L of d-lactate from CO2. This alternative strategy for the production of optically pure d-lactate could also be used to produce other acetyl-CoA-derived chemicals from CO2 by using engineered cyanobacteria.  相似文献   

18.
Because cyanobacteria directly harvest CO2 and light energy, their carbon metabolism is important for both basic and applied sciences. Here, we show that overexpression of the sigma factor sigE in Synechocystis sp. PCC 6803 widely changes sugar catabolism and increases production of the biodegradable polyester polyhydroxybutyrate (PHB) during nitrogen starvation. sigE overexpression elevates the levels of proteins implicated in glycogen catabolism, the oxidative pentose phosphate pathway, and polyhydroxyalkanoate biosynthesis. PHB accumulation is enhanced by sigE overexpression under nitrogen-limited conditions, yet the molecular weights of PHBs synthesized by the parental glucose-tolerant and sigE overexpression strain are similar. Although gene expression induced by nitrogen starvation is changed and other metabolites (such as GDP-mannose and citrate) accumulate under sigE overexpression, genetic engineering of this sigma factor altered the metabolic pathway from glycogen to PHB during nitrogen starvation.  相似文献   

19.
With the rapid development of synthetic biology in recent years, particular attention has been paid to RNA devices, especially riboswitches, because of their significant and diverse regulatory roles in prokaryotic and eukaryotic cells. Due to the limited performance and context-dependence of riboswitches, only a few of them (such as theophylline, tetracycline and ciprofloxacin riboswitches) have been utilized as regulatory tools in biotechnology. In the present study, we demonstrated that a ribosome-dependent ribo-regulator, LRR, discovered in our previous work, exhibits an attractive regulatory performance. Specifically, it offers a 60-fold change in expression in the presence of retapamulin and a low level of leaky expression of about 1–2% without antibiotics. Moreover, LRR can be combined with different promoters and performs well in Bacillus thuringiensis, B. cereus, B. amyloliquefaciens, and B. subtilis. Additionally, LRR also functions in the Gram-negative bacterium Escherichia coli. Furthermore, we demonstrate its ability to control melanin metabolism in B. thuringiensis BMB171. Our results show that LRR can be applied to regulate gene expression, construct genetic circuits and tune metabolic pathways, and has great potential for many applications in synthetic biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号