首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA.  相似文献   

2.
The efficient repair of double-strand breaks (DSBs) is crucial in maintaining genomic integrity. Sister chromatid cohesion is important for not only faithful chromosome segregation but also for proper DSB repair. During DSB repair, the Smc1–Smc3 cohesin complex is loaded onto chromatin around the DSB to support recombination-mediated DSB repair. In this study, we investigated whether Ctf18, a factor implicated in the establishment of sister chromatid cohesion, is involved in DSB repair in budding yeast. Ctf18 was recruited to HO-endonuclease induced DSB sites in an Mre11-dependent manner and to damaged chromatin in G2/M phase-arrested cells. The ctf18 mutant cells showed high sensitivity to DSB-inducible genotoxic agents and defects in DSB repair, as well as defects in damage-induced recombination between sister chromatids and between homologous chromosomes. These results suggest that Ctf18 is involved in damage-induced homologous recombination.  相似文献   

3.
Puget N  Knowlton M  Scully R 《DNA Repair》2005,4(2):149-161
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of double-strand breaks arising during replication and is thought to be important for the prevention of genomic instability and cancer. Analysis of sister chromatid recombination at a molecular level has been limited by the difficulty of selecting specifically for these events. To overcome this, we have developed a novel "nested intron" reporter that allows the positive selection in mammalian cells of "long tract" gene conversion events arising between sister chromatids. We show that these events arise spontaneously in cycling cells and are strongly induced by a site-specific double-strand break (DSB) caused by the restriction endonuclease, I-SceI. Notably, some I-SceI-induced sister chromatid recombination events entailed multiple rounds of gene amplification within the reporter, with the generation of a concatemer of amplified gene segments. Thus, there is an intimate relationship between sister chromatid recombination control and certain types of gene amplification. Dysregulated sister chromatid recombination may contribute to cancer progression, in part, by promoting gene amplification.  相似文献   

4.
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in haploid cells is generally restricted to S/G2 cell cycle phases, when DNA has been replicated and a sister chromatid is available as a repair template. This cell cycle specificity depends on cyclin-dependent protein kinases (Cdk1 in Saccharomyces cerevisiae), which initiate HR by promoting 5'-3' nucleolytic degradation of the DSB ends. Whether Cdk1 regulates other HR steps is unknown. Here we show that yku70Δ cells, which accumulate single-stranded DNA (ssDNA) at the DSB ends independently of Cdk1 activity, are able to repair a DSB by single-strand annealing (SSA) in the G1 cell cycle phase, when Cdk1 activity is low. This ability to perform SSA depends on DSB resection, because both resection and SSA are enhanced by the lack of Rad9 in yku70Δ G1 cells. Furthermore, we found that interchromosomal noncrossover recombinants are generated in yku70Δ and yku70Δ rad9Δ G1 cells, indicating that DSB resection bypasses Cdk1 requirement also for carrying out these recombination events. By contrast, yku70Δ and yku70Δ rad9Δ cells are specifically defective in interchromosomal crossover recombination when Cdk1 activity is low. Thus, Cdk1 promotes DSB repair by single-strand annealing and noncrossover recombination by acting mostly at the resection level, whereas additional events require Cdk1-dependent regulation in order to generate crossover outcomes.  相似文献   

5.
Equal sister chromatid exchange (SCE) has been thought to be an important mechanism of double-strand break (DSB) repair in eukaryotes, but this has never been proven due to the difficulty of distinguishing SCE products from parental molecules. To evaluate the biological relevance of equal SCE in DSB repair and to understand the underlying molecular mechanism, we developed recombination substrates for the analysis of DSB repair by SCE in yeast. In these substrates, most breaks are limited to one chromatid, allowing the intact sister chromatid to serve as the repair template; both equal and unequal SCE can be detected. We show that equal SCE is a major mechanism of DSB repair, is Rad51 dependent, and is stimulated by Rad59 and Mre11. Our work provides a physical analysis of mitotically occurring SCE in vivo and opens new perspectives for the study and understanding of DSB repair in eukaryotes.  相似文献   

6.
7.
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.  相似文献   

8.
Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.  相似文献   

9.
Control of sister chromatid recombination by histone H2AX   总被引:1,自引:0,他引:1  
Histone H2AX has a role in suppressing genomic instability and cancer. However, the mechanisms by which it performs these functions are poorly understood. After DNA breakage, H2AX is phosphorylated on serine 139 in chromatin near the break. We show here that H2AX serine 139 enforces efficient homologous recombinational repair of a chromosomal double-strand break (DSB) by using the sister chromatid as a template. BRCA1, Rad51, and CHK2 contribute to recombinational repair, in part independently of H2AX. H2AX(-/-) cells show increased use of single-strand annealing, an error-prone deletional mechanism of DSB repair. Therefore, the chromatin response around a chromosomal DSB, in which H2AX serine 139 phosphorylation plays a central role, "shapes" the repair process in favor of potentially error-free interchromatid homologous recombination at the expense of error-prone repair. H2AX phosphorylation may help set up a favorable disposition between sister chromatids.  相似文献   

10.
Maintaining genomic stability is critical for the prevention of disease. Numerous DNA repair pathways help to maintain genomic stability by correcting potentially lethal or disease-causing lesions to our genomes. Mounting evidence suggests that the post-translational modification sumoylation plays an important regulatory role in several aspects of DNA repair. The E3 SUMO ligase MMS21/NSE2 has gained increasing attention for its function in homologous recombination (HR), an error-free DNA repair pathway that mediates repair of double-strand breaks (DSBs) using the sister chromatid as a repair template. MMS21/NSE2 is part of the SMC5/6 complex, which has been shown to facilitate DSB repair, collapsed replication fork restart, and telomere elongation by HR. Here, I review the function of the SMC5/6 complex and its associated MMS21/NSE2 SUMO ligase activity in homologous recombination.  相似文献   

11.
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.  相似文献   

12.
BACKGROUND: While double-strand break (DSB) repair is vital to the survival of cells during both meiosis and mitosis, the preferred mechanism of repair differs drastically between the two types of cell cycle. Thus, during meiosis, it is the homologous chromosome rather than the sister chromatid that is used as a repair template. RESULTS: Cells attempting to undergo meiosis in the absence of Mnd1 arrest in prophase I due to the activation of the Mec1 DNA-damage checkpoint accumulating hyperresected DSBs and aberrant synapsis. Sporulation of mnd1Delta strains can be restored by deleting RED1 or HOP1, which permits repair of DSBs by using the sister chromatid as a repair template. Mnd1 localizes to chromatin as foci independently of DSB formation, axial element (AE) formation, and synaptonemal complex (SC) formation and does not colocalize with Rad51. Mnd1 does not preferentially associate with hotspots of recombination. CONCLUSIONS: Our results suggest that Mnd1 acts specifically to promote DSB repair by using the homologous chromosome as a repair template. The presence of Rec8, Red1, or Hop1 renders Mnd1 indispensable for DNA repair, presumably through the establishment of interhomolog (IH) bias. Localization studies suggest that Mnd1 carries out this function without being specifically recruited to the sites of DNA repair. We propose a model in which Mnd1 facilitates chromatin accessibility, which is required to allow strand invasion in meiotic chromatin.  相似文献   

13.
The expansion of trinucleotide repeat sequences associated with hereditary neurological diseases is believed from earlier studies to be due to errors in DNA replication. However, more recent studies have indicated that recombination may play a significant role in triplet repeat expansion. CAG repeat tracts have been shown to induce double-strand breaks (DSBs) during meiosis in yeast, and DSB formation is dependent on the meiotic recombination machinery. The rate of meiotic instability is several fold higher than mitotic instability. To determine whether DSB repair is responsible for the high rate of repeat tract-length alterations, the frequencies of meiotic repeat-tract instability were compared in wild-type and spo11 mutant strains. In the spo11 background, the rate of meiotic repeat-tract instability remained at the mitotic level, suggesting that meiotic alterations of CAG repeat tracts in yeast occur by the recombination mechanism. Several of these meiotic tract-length alterations are due to DSB repair involving use of the sister chromatid as a template.  相似文献   

14.
Efficient repair of DNA double-stranded breaks (DSB) requires a coordinated response at the site of lesion. Nucleolytic resection commits repair towards homologous recombination, which preferentially occurs between sister chromatids. DSB resection promotes recruitment of the Mec1 checkpoint kinase to the break. Rtt107 is a target of Mec1 and serves as a scaffold during repair. Rtt107 plays an important role during rescue of damaged replication forks, however whether Rtt107 contributes to the repair of DSBs is unknown. Here we show that Rtt107 is recruited to DSBs induced by the HO endonuclease. Rtt107 phosphorylation by Mec1 and its interaction with the Smc5-Smc6 complex are both required for Rtt107 loading to breaks, while Rtt107 regulators Slx4 and Rtt101 are not. We demonstrate that Rtt107 has an effect on the efficiency of sister chromatid recombination (SCR) and propose that its recruitment to DSBs, together with the Smc5-Smc6 complex is important for repair through the SCR pathway.  相似文献   

15.
Saccharomyces cerevisiae mre11Delta mutants are profoundly deficient in double-strand break (DSB) repair, indicating that the Mre11-Rad50-Xrs2 protein complex plays a central role in the cellular response to DNA DSBs. In this study, we examined the role of the complex in homologous recombination, the primary mode of DSB repair in yeast. We measured survival in synchronous cultures following irradiation and scored sister chromatid and interhomologue recombination genetically. mre11Delta strains were profoundly sensitive to ionizing radiation (IR) throughout the cell cycle. Mutant strains exhibited decreased frequencies of IR-induced sister chromatid and interhomologue recombination, indicating a general deficiency in homologous recombination-based DSB repair. Since a nuclease-deficient mre11 mutant was not impaired in these assays, it appears that the role of the S. cerevisiae Mre11-Rad50-Xrs2 protein complex in facilitating homologous recombination is independent of its nuclease activities.  相似文献   

16.
A CAN1/can1Δ heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.  相似文献   

17.
Fbh1 (F-box DNA helicase 1) orthologues are conserved from Schizosaccharomyces pombe to chickens and humans. Here, we report the disruption of the FBH1 gene in DT40 cells. Although the yeast fbh1 mutant shows an increase in sensitivity to DNA damaging agents, FBH1(-)(/)(-) DT40 clones show no prominent sensitivity, suggesting that the loss of FBH1 might be compensated by other genes. However, FBH1(-)(/)(-) cells exhibit increases in both sister chromatid exchange and the formation of radial structures between homologous chromosomes without showing a defect in homologous recombination. This phenotype is reminiscent of BLM(-)(/)(-) cells and suggests that Fbh1 may be involved in preventing extensive strand exchange during homologous recombination. In addition, disruption of RAD54, a major homologous recombination factor in FBH1(-)(/)(-) cells, results in a marked increase in chromosome-type breaks (breaks on both sister chromatids at the same place) following replication fork arrest. Further, FBH1BLM cells showed additive increases in both sister chromatid exchange and the formation of radial chromosomes. These data suggest that Fbh1 acts in parallel with Bloom helicase to control recombination-mediated double-strand-break repair at replication blocks and to reduce the frequency of crossover.  相似文献   

18.
The Ku heterodimer binds to the ends of double-stranded breaks (DSBs) in DNA, and is involved in nonhomologous end joining. HDF1 and HDF2, which have been identified in Saccharomyces cerevisiae as homologues of the Ku70 and Ku80 proteins of mammals, reduce radiosensitivity only when homologous recombination repair is impaired and, therefore, affect DSB repair via nonhomologous recombination. Although it has been reported that homologous recombination is defective in the hdf1 null mutant, the roles of HDF1 and HDF2 in this process are not completely clear. We investigated the effect of HDF1 and HDF2 on intrachromosomal recombination by measuring rates of deletion between direct repeats caused by spontaneous and DNA damage-induced events (DEL recombination). We found a decrease in spontaneous DEL recombination in both TCY5 (hdf1delta) and TCY6 (hdf2delta) strains, suggesting that HDF1 and HDF2 play a role in homologous recombination. As DEL recombination events may occur by sister chromatid conversion and/or single-strand annealing, which is initiated by DSBs, HDF1 and HDF2 may be required to recruit proteins to the damaged ends so as to promote single-strand annealing. The strains TCY5 and TCY6 are also defective in methylmethane sulfonate (MMS)- and X-ray-induced, but not in UV-induced DEL recombination. This confirms that HDF1 and HDF2 are required for the completion of DEL recombination by single strand annealing.  相似文献   

19.
The genomic integrity of a eukaryotic cell is challenged by over 10,000 chromosomal lesions perday. Therefore the cell has evolved efficient mechanisms to recognize, signal, and repair DNAbreaks. Defects in any of these steps can lead to chromosomal aberrations and cancers. As theselesions must be repaired in the context of chromatin, both chromatin-modifying and nucleosomeremodelingenzymes have been implicated in DNA damage repair. We reported recently that theRSC and Swi/Snf ATP-dependent chromatin-remodeling complexes are involved in DSB repairspecifically by homologous recombination. Here we discuss how such enzymes might be recruitedto DNA breaks, why so many remodelers are recruited to sites of DSBs, and a possible functionalconnection between RSC’s roles in sister chromatid cohesion and DSB repair.  相似文献   

20.
Most spontaneous DNA double-strand breaks (DSBs) arise during replication and are repaired by homologous recombination (HR) with the sister chromatid. Many proteins participate in HR, but it is often difficult to determine their in vivo functions due to the existence of alternative pathways. Here we take advantage of an in vivo assay to assess repair of a specific replication-born DSB by sister chromatid recombination (SCR). We analyzed the functional relevance of four structure-selective endonucleases (SSEs), Yen1, Mus81-Mms4, Slx1-Slx4, and Rad1, on SCR in Saccharomyces cerevisiae. Physical and genetic analyses showed that ablation of any of these SSEs leads to a specific SCR decrease that is not observed in general HR. Our work suggests that Yen1, Mus81-Mms4, Slx4, and Rad1, but not Slx1, function independently in the cleavage of intercrossed DNA structures to reconstitute broken replication forks via HR with the sister chromatid. These unique effects, which have not been detected in other studies unless double mutant combinations were used, indicate the formation of distinct alternatives for the repair of replication-born DSBs that require specific SSEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号