首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage.  相似文献   

2.
The duality of the inflammatory response to traumatic brain injury   总被引:19,自引:0,他引:19  
One and a half to two million people sustain a traumatic brain injury (TBI) in the US each year, of which approx 70,000–90,000 will suffer from long-term disability with dramatic impacts on their own and their families’ lives and enormous socio-economic costs. Brain damage following traumatic injury is a result of direct (immediate mechanical disruption of brain tissue, or primary injury) and indirect (secondary or delayed) mechanisms. These secondary mechanisms involve the initiation of an acute inflammatory response, including breakdown of the blood-brain barrier (BBB), edema formation and swelling, infiltration of peripheral blood cells and activation of resident immunocompetent cells, as well as the intrathecal release of numerous immune mediators such as interleukins and chemotactic factors. An overview over the inflammatory response to trauma as observed in clinical and in experimental TBI is presented in this review. The possibly harmful/beneficial sequelae of post-traumatic inflammation in the central nervous system (CNS) are discussed using three model mediators of inflammation in the brain, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β). While the former two may act as important mediators for the initiation and the support of post-traumatic inflammation, thus causing additional cell death and neurologic dysfunction, they may also pave the way for reparative processes. TGF-β, on the other hand, is a potent anti-inflammatory agent, which may also have some deleterious long-term effects in the injured brain. The implications of this duality of the post-traumatic inflammatory response for the treatment of brain-injured patients using anti-inflammatory strategies are discussed.  相似文献   

3.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.  相似文献   

4.
Molecular mechanisms in the pathogenesis of traumatic brain injury   总被引:15,自引:0,他引:15  
Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI.  相似文献   

5.
Traumatic brain injury (TBI) has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer''s disease (AD)-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT) mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ)-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.  相似文献   

6.
Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer's disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Genomic data generated using both human brain tissue and brains from animal models of aging and AD were analyzed in this review. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.  相似文献   

7.
It has been well established that adult neurogenesis occurs throughout life in the subventricular (SVZ) and subgranular (SGZ) zones. However, the exact role of this type of brain plasticity is not yet clear. Many studies have shown that neurogenesis is involved in learning and memory. This has led to a hypothesis which suggests that impairment in memory during aging and neurodegenerative diseases such as Alzheimer’s disease (AD) may involve abnormal neurogenesis. Indeed, during aging, there is an age-related decline in adult neurogenesis. This decline is mostly related to decreased proliferation, associated to decreased stimulation to proliferate in an aging brain. In AD, there is also evidence for decreased neurogenesis, that accompanies the neuronal loss characteristic of the disease. Interestingly in AD, there is increased proliferation, that may be caused by increasing amounts of soluble amyloid ß42-protein (Aβ42). However, most of these new neurons die, and fibrillar Aβ42 seems to be involved in generating an inappropriate environment for these neurons to mature. These findings open prospects for new strategies that can increase neurogenesis in normal or pathological processes in the aging brain, and by that decrease memory deficits.  相似文献   

8.
There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI). This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR) of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.  相似文献   

9.
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor–with such desirable pharmacokinetic properties–holds considerable promise as a potential pharmacological treatment of TBI.  相似文献   

10.
Alzheimer's disease (AD), a severe age‐related neurodegenerative disorder, lacks effective therapeutic methods at present. Physical approaches such as gamma frequency light flicker that can effectively reduce amyloid load have been reported recently. Our previous research showed that a physical method named photobiomodulation (PBM) therapy rescues Aβ‐induced dendritic atrophy in vitro. However, it remains to be further investigated the mechanism by which PBM affects AD‐related multiple pathological features to improve learning and memory deficits. Here, we found that PBM attenuated Aβ‐induced synaptic dysfunction and neuronal death through MKP7‐dependent suppression of JNK3, a brain‐specific JNK isoform related to neurodegeneration. The results showed PBM‐attenuated amyloid load, AMPA receptor endocytosis, dendrite injury, and inflammatory responses, thereby rescuing memory deficits in APP/PS1 mice. We noted JNK3 phosphorylation was dramatically decreased after PBM treatment in vivo and in vitro. Mechanistically, PBM activated ERK, which subsequently phosphorylated and stabilized MKP7, resulting in JNK3 inactivation. Furthermore, activation of ERK/MKP7 signaling by PBM increased the level of AMPA receptor subunit GluR 1 phosphorylation and attenuated AMPA receptor endocytosis in an AD pathological model. Collectively, these data demonstrated that PBM has potential therapeutic value in reducing multiple pathological features associated with AD, which is achieved by regulating JNK3, thus providing a noninvasive, and drug‐free therapeutic strategy to impede AD progression.  相似文献   

11.
Alzheimer's disease (AD) affects more than 18 million people worldwide and is characterized by progressive memory deficits, cognitive impairment and personality changes. The main cause of AD is generally attributed to the increased production and accumulation of amyloid-beta (Abeta), in association with neurofibrillary tangle (NFT) formation. Increased levels of pro-inflammatory factors such as cytokines and chemokines, and the activation of the complement cascade occurs in the brains of AD patients and contributes to the local inflammatory response triggered by senile plaque. The existence of an inflammatory component in AD is now well known on the basis of epidemiological findings showing a reduced prevalence of the disease upon long-term medication with anti-inflammatory drugs, and evidence from studies of clinical materials that shows an accumulation of activated glial cells, particularly microglia and astrocytes, in the same areas as amyloid plaques. Glial cells maintain brain plasticity and protect the brain for functional recovery from injuries. Dysfunction of glial cells may promote neurodegeneration and, eventually, the retraction of neuronal synapses, which leads to cognitive deficits. The focus of this review is on glial cells and their diversity properties in AD.  相似文献   

12.
Gao X  Deng P  Xu ZC  Chen J 《PloS one》2011,6(9):e24566
Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.  相似文献   

13.
The therapeutic hypothermia is an effective tool for TBI‐associated brain impairment, but its side effects limit in clinical routine use. Hypothermia up‐regulates RNA‐binding motif protein 3 (RBM3), which is verified to protect synaptic plasticity. Here, we found that cognitive and LTP deficits, loss of spines, AD‐like tau pathologies are displayed one month after TBI in mice. In contrast, the deficits of LTP and cognitive, loss of spines and tau abnormal phosphorylation at several sites are obviously reversed in TBI mice combined with hypothermia pre‐treatment (HT). But, the neuroprotective role of HT disappears in TBI mouse models under condition of blocking RBM3 expression with RBM3 shRNA. In other hand, overexpressing RBM3 by AAV‐RBM3 plasmid can mimic HT‐like neuroprotection against TBI‐induced chronic brain injuries, such as improving LTP and cognitive, loss of spines and tau hyperphosphorylation in TBI mouse models. Taken together, hypothermia pre‐treatment reverses TBI‐induced chronic AD‐like pathology and behaviour deficits in RBM3 expression dependent manner, RBM3 may be a potential target for neurodegeneration diseases including Alzheimer disease.  相似文献   

14.

Objective

Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer''s disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI).

Methods

We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles.

Results

Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact.

Interpretation

Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects.  相似文献   

15.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   

16.
Phospholipase A2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A2 (cPLA2)-related inflammatory responses after TBI. We found that cPLA2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA2-related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA2-related inflammatory response from the PKC pathway.  相似文献   

17.
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. Thus, TLR4 may be an important therapeutic target for neuroinflammatory injury post-TBI. This study was designed to explore potential effects and underlying mechanisms of TLR4 in rats suffered from TBI. TBI model was induced using a controlled cortical impact in rats, and application of TLR4 shRNA silenced TLR4 expression in brain prior to TBI induction. Elevated TLR4 was specifically observed in the hippocampal astrocytes and neurons posttrauma. Interestingly, TLR4 shRNA decreased the concentrations of interleukin (IL)-1β, IL-6, and tissue necrosis factor-α; alleviated hippocampal neuronal damage; reduced brain edema formation; and improved neurological deficits after TBI. Meanwhile, to further explore underlying molecular mechanisms of this neuroprotective effects of TLR4 knockdown, our results showed that TLR4 knockdown significantly inhibited the upregulation of autophagy-associated proteins caused by TBI. More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.  相似文献   

18.
Prostaglandins (PGs) play regulatory roles in a variety of physiological and pathological processes, including the immune response, cytoprotection and inflammation. Desferrioxamine (DFX), an iron chelator, is known to reduce free radical-mediated cell injury and to upregulate certain inflammatory mediators. We investigated the effects of DFX on the production of PGs and the expression of cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of PGs, using a human macrophage cell line, U937. Our results showed that COX-2 expression and PGE(2) production are upregulated by DFX treatment and that this upregulation is dependent on both COX-2 promoter activity and alteration of mRNA stability. COX-2 promoter activity may be, at least in part, mediated by activation of the extracellular signal-regulated kinase pathway. These findings suggest that iron metabolism may regulate inflammatory processes by modulating PGs as well as other inflammatory mediators.  相似文献   

19.
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.  相似文献   

20.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号