首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of phenol by a mixed microbial culture, isolated from a sewage treatment plant, was investigated in batch shake flasks. A minimum concentration of 100 and a maximum of 800 mg 1(-1) of phenol in the media were adapted in the degradation study. The phenol degradation rate varied largely and was less than 10 mg l(-1)h(-1) at both extremes of the initial concentrations in the media. The degradation rate was maximum 15.7 mg l(-1)h(-1) at 400 mg l(-1) phenol. The culture followed substrate inhibition kinetics and the specific growth rate were fitted to Haldane and Han-Levenspiel models. Between the two models the Han-Levenspiel was found to be a better fit with a root mean square error of 0.0211. The biokinetics constants estimated using these models showed good potential of the mixed microbial culture in phenol degradation.  相似文献   

2.
Phenol biodegradation in a batch reactor using a pure culture of Pseudomonas putida DSM 548 was studied. The purpose of the experiments was to determine the kinetics of biodegradation by measuring biomass growth rates and phenol concentration as a function of time in a batch reactor. The Haldane equation μ=μ(m)S/((K(s)+S+S(2))/K(i)) adequately describes cell growth with kinetic constants μ(m)=0.436h(-1), K(s)=6.19mgl(-1), K(i)=54.1mgl(-1). These values are in the range of those published in literature for pure or mixed cultures degrading phenol.  相似文献   

3.
The biodegradability of phenol and six other phenolic compounds (o-, m-, and p-cresol, 2-, 3-, and 4-ethylphenol) was examined in batch methanogenic cultures. The effect of concentration of these alkyl phenols on the anaerobic biodegradation of phenol was also evaluated. The inoculum used in this study was cultivated in a continuous flow laboratory fermenter with phenol as the primary substrate. Phenol, at initial concentrations as high to 1400 mg/L was completely degraded to methane and carbondioxide after 350 hours incubation. Complete degradation of m- and p-cresol was also observed while the ethylphenols and o-cresol were not significantly degraded.At initial concentrations exceeding 600 mg/L, phenol inhibited the phenol-degrading microorganisms but not the methanogens. At about 600 mg/L, cresols reduced the rate of phenol degradation to 50% of that observed in a control culture containing only 200 mg/L phenol. Ethylphenols were more inhibitory than cresols. Phenol degrading microorganisms were more susceptible to inhibition by cresols and ethylphenols than were the methanogens. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

4.
Biodegradation of phenol and 4-chlorophenol (4-cp) using pure culture of Candida albicans PDY-07 under anaerobic condition was studied. The results showed that the strain could completely degrade up to 1,800 mg/l phenol within 68 h. The capacity of the strain to degrade phenol was higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Comparatively, low-concentration phenol from 25 to 150 mg/l supplied a carbon and energy source for Candida albicans PDY-07 in the early phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in that 50 mg/l 4-cp was degraded within less time than that without phenol. While the biodegradation of 50 mg/l 4-cp was inhibited in the presence of 200 mg/l phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and dual substrates in batch cultures. The results demonstrated that the models adequately described the dynamic behaviors of biodegradation by Candida albicans PDY-07.  相似文献   

5.
The paper presents the main results obtained from the study of the biodegradation of phenolic industrial wastewaters by a pure culture of immobilized cells of Pseudomonas putida ATCC 17484. The experiments were carried out in batch and continuous mode. The maximum degradation capacity and the influence of the adaptation of the microorganism to the substrate were studied in batch mode. Industrial wastewater with a phenol concentration of 1000 mg/l was degraded when the microorganism was adapted to the toxic chemical. The presence in the wastewater of compounds other than phenol was noted and it was found that Pseudomonas putida was able to degrade these compounds. In continuous mode, a fluidized-bed bioreactor was operated and the influence of the organic loading rate on the removal efficiency of phenol was studied. The bioreactor showed phenol degradation efficiencies higher than 90%, even for a phenol loading rate of 0.5 g phenol/ld (corresponding to 0.54 g TOC/ld).  相似文献   

6.
A two-phase organic-aqueous system was used to degrade phenol in both batch and fed-batch culture. The solvent, which contained the phenol and partitioned it into the aqueous phase, was systematically selected based on volatility, solubility in the aqueous phase, partition coefficient for phenol, biocompatibility, and cost. The two-phase partitioning bioreactor used 500 mL of 2-undecanone loaded with high concentrations of phenol to deliver the xenobiotic to Pseudomonas putida ATCC 11172 in the 1-L aqueous phase, at subinhibitory levels. The initial concentrations of phenol selected for the aqueous phase were predicted using the experimentally determined partition coefficient for this ternary system of 47.6. This system was initially observed to degrade 4 g of phenol in just over 48 h in batch culture. Further loading of the organic phase in subsequent experiments demonstrated that the system was capable of degrading 10 g of phenol to completion in approximately 72 h. The higher levels of phenol in the system caused a modest increase in the duration of the lag phase, but did not lead to complete inhibition or cell death. The use of a fed-batch approach allowed the system to ultimately consume 28 g of phenol in approximately 165 h, without experiencing substrate toxicity. In this system, phenol delivery to the aqueous phase is demand based, and is directly related to the metabolic activity of the cells. This system permits high loading of phenol without the corresponding substrate inhibition commonly seen in conventional bioreactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 155-162, 1997.  相似文献   

7.
AIMS: The aim of this study is to evaluate the utility of aerobically grown microbial granules for the biological treatment of phenol-containing wastewater. METHODS AND RESULTS: A column-type sequential aerobic sludge blanket reactor was inoculated with activated sludge and fed with phenol as the sole carbon source, at a rate of 1.5 g phenol l-1 d-1. Aerobically grown microbial granules first appeared on day 9 of reactor operation and quickly grew to displace the seed flocs as the dominant form of biomass in the reactor. These granules were compact and regular in appearance, and consisted of bacterial rods and cocci and fungi embedded in an extracellular polymeric matrix. The granules had a mean size of 0.52 mm, a sludge volume index of 40 ml g-1 and a specific oxygen utilization rate of 110 mg oxygen g VSS-1 h-1 (VSS stands for volatile suspended solids). Specific phenol degradation rates increased with phenol concentration from 0 to 500 mg phenol l-1, peaked at 1.4 g phenol g VSS-1 d-1, and declined with further increases in phenol concentration as substrate inhibition effects became important. CONCLUSIONS: Aerobically grown microbial granules were successfully cultivated in a reactor maintained at a loading rate of 1.5 g phenol l-1 d-1. The granules exhibited a high tolerance towards phenol. Significant rates of phenol degradation were attained at phenol concentrations as high as 2 g l-1. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the ability of aerobically grown microbial granules to degrade phenol. These granules appear to represent an excellent immobilization strategy for microorganisms to biologically remove phenol and other toxic chemicals in high-strength industrial wastewaters.  相似文献   

8.
Green fluorescent proteins (GFPs) are frequently used as marker and reporter systems to assess the fate and activity of microbial strains with the ability to degrade xenobiotic compounds. To evaluate the potential of this tool for tracking herbicide-degrading microorganisms in the environment a promoterless gfp was linked to the tfd C promoter, which is activated during degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), and integrated into the chromosome of the 2,4-D-degrading strain Ralstonia eutropha JMP 134. The effects of the inserted gfp gene on the kinetics of 2,4-D degradation by R. eutropha in batch and chemostat culture were compared to those of the wild-type strain. In batch culture with 2,4-D as the only carbon and energy source the maximum specific growth rate of the gfp-marked strain did not differ significantly from the wild type. However, compared to the wild type, the 2,4-D steady-state concentration in 2,4-D-limited chemostat cultures of the gfp-marked strain was higher at all dilution rates tested. The reduced competitiveness of the gfp-marked strain at low substrate concentrations was confirmed in a competition experiment for 2,4-D in continuous culture at a dilution rate of 0.075 h-1. Reproducibly, the gfp-marked strain was displaced by the wild-type strain. The study clearly demonstrates that fitness of constructs cannot be assessed by measuring micro max with selected substrates in batch cultures only but that a thorough kinetic analysis is needed, which also considers slow, carbon-limited growth conditions as they occur in the environment.  相似文献   

9.
The degradation of dichloromethane by the pure strainHyphomicrobium GJ21 and by an enrichment culture, isolated from a continuously operating biological trickling filter system, as well as the corresponding growth rates of these organisms were investigated in several batch experiments. By fitting the experimental data to generally accepted theoretical expressions for microbial growth, the maximum growth rates were determined. The effect of NaCl was investigated at salt concentrations varying from 0 to 1000 mM. Furthermore the dichloromethane degradation was investigated separately in experiments in which a high initial biomass concentration was applied. The results show that microbial growth is strongly inhibited by increased NaCl concentrations (50% reduction of max at 200–250 mM NaCl), while a certain degree of adaptation has taken place within an operational system eliminating dichloromethane. A critical NaCl concentration for growth of 600 mM was found for the microbial culture isolated from an operational trickling filter, while a value of 375 mM was found for the pure cultureHyphomicrobium GJ21. The substrate degradation appears to be much less susceptible to inhibition by NaCl. Even at 800 mM NaCl relatively high substrate degradation rates are still observed, although this process is again dependent on the NaCl concentration. Here the substrate elimination is due to the maintenance requirements of the microorganisms. The inhibition of the dichloromethane elimination was also investigated in a laboratory scale trickling filter. The results of these experiments confirmed those obtained in the batch experiments. At NaCl concentrations exceeding 600 mM a considerable elimination of dichloromethane was still observed for during several months of operation. These observations indicate that the inhibition of microbial growth offers a significant control parameter against excessive biomass growth in biological trickling filters for waste gas treatment.  相似文献   

10.
The rate of biodegradation of phenol by Klebsiella oxytoca strain was studied in the nutrient broth and M9 minimal medium. It was found that K. oxytoca degrade phenol at elevated phenol concentration where 75% of initial phenol concentration of 100 ppm will degrade within 72 h. This rate was increased with increasing the initial cell densities, increasing the aeration rate and increasing the time required for complete degradation. At phenol concentration above 400 ppm, the cells were unable to degrade the substrate efficiently due to the increasing concentration of phenol in the medium. The culture conditions were also showed a significant impact on the ability of these cells to remove phenol. The optimum solution pH and temperature were 6.8 and 37°C, respectively. The growth of these cells in the presence and absence of phenol was modeled and it was found that the Recatti equation best fit the growth in the absence of phenol whereas the Voltera equation accounted for the history of the cell population in the presence of phenol.  相似文献   

11.
Chlorophenolic waste most often contains phenol and rho-cresol along with chlorophenols. A Rhodococcus erythropolis strain M1 was isolated with the ability to degrade 2-chlorophenol, phenol and p-cresol (100 mgl(-1), each) in 18, 24 and 20 h, respectively, with negligible lag. However, Rhodococcus sp. characterized by low growth rate, pose a threat to be outgrown by bacteria occurring in natural habitats. In the present study, interaction of R. erythropolis M1 with another isolated bacteria generally encountered in activated sludge for water treatment like Pseudomonas fluorescens P1 was studied. 2-chlorophenol, phenol and p-cresol were selected as the substrates for the study. Viable cell counts showed competitive interaction between the species on 2-chlorophenol and phenol. Specific growth rate of pure culture of R. erythropolis M1 was higher than P. fluorescens P1 on 2-chlorophenol. However, in mixed culture, P. fluorescens P1 showed higher growth rate. Degradation of phenol showed higher growth rate of R. erythropolis M1 both in pure and in mixed culture form. Degradation of p-cresol had shown similar counts for both populations indicating neutral type of interaction. This observation was substantiated by detecting the growth rate, where both cultures had similar growth rate in pure and in the mixed culture form. Rate of 2-chlorophenol degradation was higher when R. erythropolis M1 was used as the pure culture as compared to the degradation rates observed with the P. fluorescens P1 or with the mixed culture. However, in case of phenol and p-cresol, degradation by the mixed culture had resulted in higher degradation rates as compared to the degradation of the substrates by both the axenic cultures.  相似文献   

12.
Summary A defined mixed culture of the yeast Cryptococcus elinovii H1 and the bacterium Pseudomonas putida P8 was immobilized by adsorption on activated carbon and sintered glass, respectively. Depending on its adsorption capacity for phenol the activated carbon system could completely degrade 17 g/l in batch culture, whereas the sintered glass system was able to degrade phenol up to 4 g/l. During semicontinuous degradation of phenol (1 g/l) both systems reached constant degradation times with the fourth batch that lasted 8 h when using the activated carbon system and 10 h in the sintered glass system. In the course of continuous degradation of phenol the activated carbon system reached a maximum degradation rate of 9.2 g l–1 day–1 compared to 6.4 g l–1 day–1degraded by the sintered glass system. 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8. Increased membrane permeability under the influence of phenol was demonstrated by the examination of K+ efflux from P. putida P8. Offprint requests to: H.-J. Rehm  相似文献   

13.
从含酚废水处理池污泥中驯化分离得到一株能以苯酚为唯一碳源的菌株FD-1。经18SrDNA和ITS序列的BLAST比对及系统发育分析,鉴定FD-1为热带假丝酵母(Candida tropicalis)的近缘种。FD-1对苯酚的降解能力较强,能够完全降解浓度为1 000mg·L-1的苯酚溶液。初步确定了FD-1在降解苯酚溶液时的最适温度为30~35℃,pH为6.0~7.0,并且通过探讨加入无机盐、培养基原料以及改变接种量三个因素对苯酚降解的影响,其耐受盐的浓度可达5%,对实践中应用微生物降解含酚废水具有积极的意义。  相似文献   

14.
Single-chamber microbial fuel cells (MFCs) with air-cathode were constructed. MFCs were fed different feedstocks during their inoculation, their role on phenol degradation and MFC performance were investigated. The results showed that the MFC inoculated using glucose exhibited the highest power density (31.3 mW m?2) when phenol was used as the sole substrate for MFC. The corresponding biodegradation kinetic constant was obtained at 0.035 h?1, at an initial phenol concentration of 600 mg L?1. Moreover, the phenol degradation rates in this MFC with closed circuit were 9.8–16.5 % higher than those in MFC with opened circuit. The cyclic voltammograms revealed a different electrochemical activity of the anode biofilms in the MFC, and this led to differences in performance of the MFCs with phenol as sole substrate. These results demonstrated that phenol degradation and power production are affected by current generation and type of acclimation.  相似文献   

15.
Studies were carried out to understand parallel survival of two strains when cultivated as co-culture on a single carbon source in continuous cultivation. Strains used were Pseudomonas sp. strain CF600 that is reported for degradation of phenol; and HKR1 a lab strain, which was isolated from a site contaminated with phenol. In continuous cultivation Pseudomonas sp. CF600 showed an accumulation of colored intermediate, 2-hydroxy muconic semialdehyde (HMS), when fed with phenol as a sole source of carbon under dissolved oxygen limiting condition (40% saturation level). Under the same cultivation condition when it was co-cultured with strain HKR1, complete degradation of phenol was observed with no accumulation of intermediate. Different dilution rates (0.03, 0.15, and 0.30) were set in the bioreactor during cultivation. It was also observed that both the strains follow a typical cell density ratio of 1:18 as strain HKR1: Pseudomonas sp. CF600 irrespective of the dilution rates used in the study to favor degradation of phenol. Pseudomonas sp. CF600 is reported to degrade phenol via a plasmid-encoded pathway (pVI150). The enzymes for this meta-cleavage pathway are clustered on 15 genes encoded by a single operon, the dmp operon. PCR using primers from the different catabolic loci of dmp operon, demonstrated that the strain HKR1 follows a different metabolic pathway for intermediate utilization.  相似文献   

16.
A coupled computational fluid dynamic (CFD) model, combining hydrodynamics with biochemical reactions, was developed to simulate the local transient flow patterns and the dynamic behaviors of cell growth and phenol biodegradation by yeast Candida tropicalis in an internal loop airlift reactor (ILALR). To validate this proposed model effectively, the simulated local hydrodynamic characteristics of the gas-mineral salt medium solution (gas-liquid) two-phase system, at a phenol concentration of 1,200 mg L(-1) and no presence of cells, was experimentally investigated in the ILALR using laser Doppler anemometer (LDA) measurements and conductivity probe. Furthermore, the validation of the simulated phenol biodegradation behavior by C. tropicalis at different initial concentrations of phenol and cell was also carried out in the ILALR. The time-averaged and transient results of the model simulations illustrated a satisfactory agreement with the experimental data. Finally, the local instantaneous flow and phenol biodegradation features, including gas holdup, gas velocity, liquid velocity, cell concentration, and phenol concentration inside the ILALR were successfully predicted by the proposed model.  相似文献   

17.
多环芳烃降解菌筛选及其降解特性   总被引:27,自引:5,他引:22  
通过选择性富集培养,从辽河油田稠油污染土壤4号土样中,获得了能以高浓度菲(2000mg·L-1)为唯一碳源和能源快速生长的优势菌系和优良菌株ZL5.16S rDNA核苷酸序列分析表明,ZL5菌株归类于鞘氨醇单胞菌属,分得的菌系和菌株有较强的降解菲能力,120h混合菌系降解了投加菲的95.28%,菌株降解了69.24%,但它们对芘的降解能力均较低,外加碳源葡萄糖可提高菌系和菌株的菲、芘降解能力,加量多。提高幅度大,但超过一定量。降解速率开始下降,表现出抑制效应。所以,应用时需控制适宜的浓度。  相似文献   

18.
Jiang Y  Wen J  Lan L  Hu Z 《Biodegradation》2007,18(6):719-729
Biodegradation of phenol and 4-chlorophenol (4-cp) using a pure culture of Candida tropicalis was studied. The results showed that C. tropicalis could degrade 2,000 mg l−1 phenol alone and 350 mg l−1 4-cp alone within 66 and 55 h, respectively. The capacity of the strain to degrade phenol was obviously higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Phenol beyond 800 mg l−1 could not be degraded in the presence of 350 mg l−1 4-cp. Comparatively, low-concentration phenol from 100 to 600 mg l−1 supplied a sole carbon and energy source for C. tropicalis in the initial phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in the fact that 4-cp biodegradation velocity was higher than that without phenol. And the capacity of C. tropicalis to degrade 4-cp was increased up to 420 mg l−1 with the presence of 100–160 mg l−1 phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and mixed substrates in batch cultures. The results illustrated that the models proposed adequately described the dynamic behaviors of biodegradation by C. tropicalis.  相似文献   

19.
This study focuses on the biodegradation of difluorobenzenes (DFBs), compounds commonly used as intermediates in the industrial synthesis of various pharmaceutical and agricultural chemicals. A previously isolated microbial strain (strain F11), identified as Labrys portucalensis, able to degrade fluorobenzene (FB) as sole carbon and energy source, was tested for its capability to degrade 1,2-, 1,3- and 1,4-DFB in batch cultures. Strain F11 could use 1,3-DFB as a sole carbon and energy source, with quantitative release of fluoride, but 1,4-DFB was only degraded and defluorinated when FB was supplied simultaneously. Growth of strain F11 with 0.5 mM of 1,3-DFB led to stoichiometric release of fluoride ion. The same result was obtained in cultures fed with 1 mM of 1,3-DFB or 0.5 mM of 1,4-DFB, in the presence of 1 mM of FB. No growth occurred with 1,2-DFB as substrate, and degradation of FB was inhibited when supplied simultaneously with 1,2-DFB. To our knowledge, this is the first time biodegradation of 1,3-DFB as a sole carbon and energy source, and cometabolic degradation of 1,4-DFB, by a single bacterium, is reported.  相似文献   

20.
The effect of a nontoxic easily degradable substrate, glucose, on the biodegradation of toxic pollutant, phenol, was studied in batch reactors using a phenol degrading culture (Arthrobacter species). The effect of glucose on phenol degradation was determined at different glucose concentrations. The effect of different inoculum on substrate removal in a phenol and glucose mixture was also studied. Results indicated that when a mixed substrate (phenol and glucose) was used, phenol acclimated population showed an initial preference for phenol and utilised glucose after phenol removal. However phenol degradation rate was reduced in the presence of glucose. It was also observed that phenol degradation was completely inhibited when the glucose concentration exceeds 2 g/l. The substrate removal pattern changed completely when inoculum was drawn from mixed substrate acclimatised culture. The glucose utilisation started immediately and the rate of glucose utilisation was not affected by the presence of phenol. The phenol degradation also started simultaneously. In presence of phenol only, the rate of phenol degradation for the culture acclimatised to mixed substrates was lower than that of phenol acclimatised culture. These results indicate that nontoxic substrate can affect the biodegradation of toxic pollutants is suitable and acclimatisation may be necessary for biodegradation of mixed substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号