首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Diel vertical migration (DVM) is a complex and dynamic behaviour against predation because the reaction of migrating organisms to light intensity plays a primary role, but is modified by other factors. In the relatively shallow but thermally stratified Lake Eymir, Daphnia pulex de Geers utilized vertical refugia afforded by the hypolimnion during both day and night. Differences in general vulnerability to fish predation determined the differences in their mean residence depths (MRDs) of different population categories such as most conspicuous and vulnerable individuals of adult with eggs inhabited the deepest depth, whereas juveniles stayed close the thermocline. In late spring, profoundly high amplitude of displacement within the hypolimnion, probably due to the hypolimnion being well-lit and relatively well-oxygenated for the fish and rather unsafe for the large-sized daphnids, was recorded. Therefore, the large-sized daphnids daytime refuge was close to the bottom whereas at night they moved upward to benefit from warmer water temperature along with food availability in the presence of fish predation but still remained below the thermocline. In summer, the insignificant amplitude of the hypolimnetic, which later became epilimnetic, displacements were probably due to the near-anoxic condition found below the thermocline. This might have deterred the fish, thus providing a safer refuge for daphnids in the below thermocline, which afterwards became the above thermocline. Low oxygen availability was regarded as the summer proximate factor. The abundant food and warmer water conditions found in the below/above thermocline also accounted for absence of DVM in summer. Consequently, this study suggests that DVM by Daphnia is an adaptation that is plastic to changing environmental conditions.  相似文献   

2.
1. The vertical distribution of zooplankton results from active habitat choice aiming to optimise fitness gain in a system of trade‐offs. 2. Using large, controlled indoor mesocosms (Plön Plankton Towers), we monitored the behavioural response of Daphnia pulicaria to vertical gradients of temperature, food, oxygen and light, in the presence and absence of fish predation. 3. In the absence of fish, Daphnia distributed as predicted by an ideal ‘free distribution with costs’. If the food was distributed homogeneously, they stayed in the warm epilimnion, while they balanced their time dwelling in epi‐ and hypolimnion if the food was concentrated in a deep‐water maximum. 4. However, oxygen depletion in the hypolimnion, representing an additional cost, prevented Daphnia from completely exploiting the hypolimnetic food maximum. Consequently, the proportion dwelling in the hypolimnion was larger if oxygen was not limiting. 5. Fish predation had an overwhelming effect, driving Daphnia into the hypolimnion under all experimental conditions. If permitted by oxygen availability, Daphnia used the whole hypolimnion, but oxygen depletion reduced their possible habitat to the upper hypolimnion with oxygen concentrations above c. 0.7 mg L?1. As fish were less tolerant of low oxygen, the layer below the thermocline formed a predation refuge for Daphnia.  相似文献   

3.
Habitat choice in relation to environmental factors of two coexisting calanoid copepod species, Eudiaptomus gracilis and E. graciloides, was studied in a mesotrophic lake and in large indoor mesocosms. Both species and sexes showed pronounced diel vertical migration (DVM) in the field. In 12 m deep mesocosms with free ranging fish DVM was observed and species increased day depth over time. No changes were observed in copepod day depth over time in experiments with fish kairomone. It is hypothesized that fish kairomone acts as an early warning system to copepods which respond by moving deeper, but only as far as the thermocline. For full DVM, a nearby mechanical stimulus is necessary. Thus, as fish go deeper to feed, copepods retreat. The response of copepods to fish predation, in the presence of low and high numbers of Daphnia,shows that copepods effectively use Daphniaas living shields to avoid predation. The two species adopt different vertical migration strategies depending on whether there are high or low numbers of Daphniapresent. A dominant feature of mesocosm experiments was the night time aggregating (lekking) of E. gracilis males at the surface. When the spring and autumn percentages of risk takers in the epilimnion were compared, E. gracilis, particularly males, suffered the greatest cost.  相似文献   

4.
Previous studies confirmed the presence of melatonin in Daphnia magna and demonstrated diurnal fluctuations in its concentration. It is also known that in several invertebrate species, melatonin affects locomotor activity. We tested the hypothesis that this hormone is involved in the regulation of Daphnia diel vertical migration (DVM) behaviour that is well recognized as the adaptive response to predation threat. Using ‘plankton organs’, we studied the effect of three concentrations of exogenous melatonin (10−5, 10−7, 10−9 M) on DVM of both female and male D. magna in the presence or absence of chemical cue (kairomone) of planktivorous fish. Depth distribution was measured six times a day, using infrared-sensitive closed circuit television cameras. Our results showed a significant effect of melatonin on the mean depth of experimental populations, both males and females, but only when melatonin was combined with fish kairomone. Females stayed, on average, closer to the surface than males, both responding to the presence of kairomone by descending to deeper strata. In the presence of exogenous melatonin and with the threat of predation, Daphnia stayed closer to the surface and their distribution was more variable than that of individuals, which were exposed to the kairomone alone. Approaching the surface in the presence of predation threat seems to be maladaptive. We postulate the role of melatonin as a stress signal inhibitor in molecular pathways of response to predation threat in Cladocera.  相似文献   

5.
Lampert  Winfried  Grey  Jonathan 《Hydrobiologia》2003,500(1-3):95-101
The exploitation of a deep algal maximum by Daphnia in the absence of fish predation was studied in large indoor mesocosms. Facing the dilemma of low food but high temperature in the epilimnion vs. high food but low temperature in the hypolimnion, Daphnia distribute above and below the thermocline in order to optimise their fitness. Labelling hypolimnetic algae with 15N revealed that the vertical distribution of Daphnia is dynamic, i.e., all individuals traverse the thermocline and allocate a certain proportion of their time to feeding in the cold water. The overall energy gain from the deep-water algal maximum is lower than from the same algal concentration in the epilimnion due to the low temperature and the limited time an individual spends in the hypolimnion. The results provide mechanistic support for the hypothesis that Daphnia chose their habitat according to an Ideal Free Distribution with Costs model.  相似文献   

6.
1. In the absence of fish predation, Daphnia exploiting a deep‐water algal maximum are faced with a trade‐off. They can either dwell in the epilimnion where development in the warm water is fast, but food shortage causes low egg production, or in the hypolimnion, where food availability is high but development is slow because of low temperatures. 2. We tested the hypotheses that (i) depth distributions of various ontogenetic stages (size classes and egg‐bearing females) differ because daphnids react to light with size‐specific diel vertical migration (DVM) even in the absence of fish (residual predator avoidance hypothesis) and (ii) differently sized daphnids select different depths because the relative importance of temperature and food varies for ontogenetic stages (physiological hypothesis). We used large indoor mesocosms (Plankton Towers) to test these hypotheses experimentally. 3. Temperature was the strongest factor governing the distribution, with larger proportions of the population dwelling in the food‐rich hypolimnion if the temperature gradient was shallow. There were small but significant differences between ontogenetic stages during the day, but not at night. This suggested the existence of a ‘residual’ effect of light on depth distribution in the absence of a fish cue. 4. Although large individuals exhibited greater amplitude of DVM, the physiological hypothesis had to be rejected. A stage‐specific physiological effect is unlikely to be directly triggered by light, hence vertical movement of the individuals should not be synchronised. Rather, being forced into deeper layers by the residual light response during the day, large and egg‐bearing females experience a lower average temperature during day than juveniles. They probably compensate for this by spending longer time periods in warm waters at night.  相似文献   

7.
Population dynamics and vertical migration of Daphnia longispina in Lake Yunoko were studied. The Daphnia population was small in spring and early summer, probably because of high predation pressure by fish. The population grew in midsummer, when thermal stratification developed and the dissolved oxygen became very low in the deeper layer of the hypolimnion. In this season, adults of D. longispina concentrated in the daytime near the lake bottom, where fish were absent because of the anoxic conditions, but ascended at night to the upper layer of the hypolimnion, where food was most abundant. The low oxygen layer near the bottom kept out the predators and protected Daphnia from predation, and consequently contributed to the built-up of its population. However, the low oxygen layer was unfavorable for reproduction of Daphnia, as reflected in the low egg ratio and high percentage of males in the population. The population decreased in the fall, when thermal stratification disappeared and predation pressure seemed to increase.  相似文献   

8.
M. A. Leibold 《Oecologia》1991,86(4):510-520
Summary Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.  相似文献   

9.
1. The vertical distribution of Daphnia in stratified lakes strongly depends on the depth profiles of temperature and food resources. However, ecological requirements for these factors are slightly different for juvenile and adult Daphnia. 2. Here, I investigated whether food quality influences the habitat selection of Daphnia pulicaria at night and whether the habitat selection of juvenile and adult D. pulicaria is different. Daphnia were allowed to choose their optimal habitat in large, stratified water columns (plankton towers, Plön) that held either the green alga Scenedesmus obliquus (high quality) in the cold hypolimnion (Hypo‐treatment) or S. obliquus in the warm epi‐ and cold hypolimnion (SCEN‐treatment) or the non‐toxic cyanobacterium Synechococcus elongatus (low quality) in the warm epilimnion and S. obliquus in the cold hypolimnion (SYN treatment). 3. When food (S. obliquus) was present only in the hypolimnion (Hypo‐treatment), juveniles and adults distributed similarly in the water column and spent most of their time in the interface between the warm and the food rich layer. 4. When food was present in the epilimnion and hypolimnion (SCEN‐ and SYN‐treatments), juvenile and adult D. pulicaria moved into the warm and now also food‐rich epilimnion, however, the magnitude of this shift depended on the food type and age class of Daphnia. Adult and juvenile D. pulicaria spent most of their time in the epilimnion when food there was of a high quality (S. obliquus; SCEN‐treatment). However, compared to the juveniles, adult Daphnia spent significantly more time in the colder hypolimnion when epilimnetic food was of a low quality (S. elongatus; SYN‐treament). 5. Therefore, habitat selection of adult D. pulicaria was affected by food quality whereas the habitat selection of juveniles was not. 6. Additional growth and reproduction experiments show that the food quality is likely to be responsible for the different habitat selection of juveniles and adults in the SYN‐treatment. 7. In conclusion, my experiments show that D. pulicaria behaviourally reacts to the quality of its food source.  相似文献   

10.
Studies on spatial avoidance behaviour of predators by prey often ignored the fact that prey typically face multiple predators which themselves interact and show a spatial pattern in abundance and predation rates (PRs). In a series of laboratory experiments, we investigated predation risk (PRI) and horizontal migration of the cladoceran Daphnia magna between open water and vegetation in response to two important invertebrate predators with a contrasting spatial distribution: pelagic Choaborus and vegetation-associated Ischnura. As expected, PRI by Chaoborus was higher in open water due to higher numbers and higher PRs of Chaoborus, while for Ischnura, PRI was highest in the vegetation due to higher densities, despite lower PRs of Ischnura. In accordance with this, Daphnia moved into the vegetation in the presence of the pelagic Chaoborus alone. In the presence of Ischnura alone, however, Daphnia showed no response. We hypothesize this may be the result of a constitutive behaviour of Daphnia to avoid pelagic fish, which impedes a response to the open water. In the combined predator treatment, Daphnia migrated to the open water zone. The increased risk of predation in the vegetation, due to a facilitating effect of Chaoborus on Ischnura PRs is believed to have caused this migration of the Daphnia. This response of Daphnia declined through time and Daphnia moved toward the vegetation. A decline in the activity of the Ischnura larvae through time may have switched the risk balance in favour of the vegetation environment.  相似文献   

11.
1. It has been suggested that chemical information from crowded populations of an animal such as Daphnia carries a cue indicating imminent food limitation, and we suggest that in the presence of fish kairomones, it may also convey a hint of the need to enhance antipredation defences. 2. We performed two‐factorial experiments with Daphnia grown in flow‐through plankton chambers in medium containing high levels of Scenedesmus food plus chemical information on either low or high population density levels and in the presence or absence of fish chemical cues (kairomones) and recorded (i) the effects on Daphnia growth rate and reproduction, and (ii) the effects on Daphnia depth selection. Further depth‐selection experiments were performed to test the reaction of Daphnia to crowding information at different Daphnia concentrations and to test its effect on daytime and night‐time depth selection by different Daphnia instars in the presence of kairomones. 3. The effects of crowding information alone (in the absence of kairomones) were weak and were not significantly strengthened by the addition of kairomones. The effects of kairomones alone (in the absence of crowding information) were much stronger and were increased by the presence of crowding chemicals: Daphnia selected greater depths in daylight (the later the instar and the larger its body size, the greater the depth), their body growth was slower and daily reproductive investment reduced, compared with Daphnia grown in the absence of crowding information. This suggested that crowding chemicals carry a cue indicating the need to invest more into antipredation defences. 4. The adaptive significance of these effects was confirmed by the differential vulnerability to predation of the Daphnia when offered as prey to live roach after being grown for 6 days either in the presence (higher vulnerability) or in the absence (lower vulnerability) of information on high density. 5. The strong interaction between crowding information and fish kairomones may be explained either as the reaction to a cue indicating impending food stress or as the reaction to a signal of increased predation risk. While the former scenario is already known from crowding studies, the latter is a novel idea that stems from the old concept of ‘low‐density anti‐predation refuge’. The two scenarios are not mutually exclusive: each stems from the need to invest in survival rather than in growth and reproduction [Corrections were made to this paragraph after first online publication on 4 April 2012].  相似文献   

12.
Gliwicz ZM  Maszczyk P 《Oecologia》2007,150(4):706-715
Daphnia hyalina × galeata (Dhg) and D. pulicaria (Dp) are ready to pay greater costs in terms of predation risk avoidance at high rather than at low food levels. Such costs are easier to assess in Daphnia than in large long-lived and difficult-to-handle herbivores, since they can be precisely determined in a few-day experiment as the reduced growth (P=AR) resulting from diminished assimilation (A) and/or increased respiration (R). In experiments with Daphnia grown for six days from the neonate to the first clutch of eggs, which were given different levels of algal food (Scenedesmus at concentrations from 0.05 to 1.60 mg C l−1), individual growth was lower in the presence of fish kairomone (chemical information on fish predation; present at a concentration that induces antipredator defensive behavior and life histories) than in the absence of kairomone (control). The difference from the control was negligible at the lowest food levels, and gradually increased with increasing food concentration. At a food concentration of 1.6 mg C l−1, growth was reduced by 9–32 and 0–8% in Dhg and Dp, respectively, compared to the controls. A similar reduction was observed in the body length of six-day-old animals (Dhg 6–19%, Dp 0–14%), but not in the first clutch reproductive effort (clutch volume). Daphnia had a greater number of eggs per clutch in the presence of the kairomone, but smaller eggs, so that the total volume of eggs in a clutch was the same with and without kairomone. The amplification of the effect of the kairomone due to high food levels was weaker in Dp, a species that rarely coexists with planktivorous fish in natural habitats.  相似文献   

13.
Migrations of Daphnia longispina were studied in a small humic lake with an exceptionally shallow oxic epilimnion. Horizontal distributions showed clear avoidance of the shoreline, which might be explained by the lower density of predators (Chaoborus sp. and Notonecta sp.) in the central parts of the lake. In early summer all size classes of D. longispina exhibited upward nocturnal vertical migration, descending to the upper hypolimnion in daytime. Later in summer, when the nocturnally migrating Chaoborus sp. had grown large enough to graze on small Daphnia, the latter seemed to shift towards twilight migration. However, large Daphnia individuals showed no synchronized migration; rather their bimodal vertical distributions suggested asynchronous vertical migration. Large individuals showed a particular tendency to concentrate near to the oxycline, close to the dense phytoplankton and bacteria populations in the upper part of the anoxic hypolimnion. According to vertical trap experiments, large D. longispina visited the anoxic hypolimnion and might harvest its abundant food resources. The high haemoglobin content of large individuals seems a specific adaptation to allow access to low oxygen water and hence to maximize grazing potential, in both epi- and hypolimnion, and minimize predation pressure. By staying predominantly in cooler water near the oxycline, Daphnia might also minimize its energy consumption to adjust to low food availability while sustaining a sufficiently high population density to exploit those unpredictable short periods with abundant food which are common in small headwater lakes. It is suggested that migrations of zooplankton are a complex behavioural adaptation which may not be explained by any single factor. In humic lakes with shallow stratification, vertical migrations seem to offer particularly high potential advantages, because of the short distances between dramatically different environments in the water column. In further studies more emphasis should be placed on migrations of individuals rather than populations, and migrations should be considered as a dynamic part of the structure and function of the whole planktonic ecosystem.  相似文献   

14.
Reichwaldt ES  Stibor H 《Oecologia》2005,146(1):50-56
Diel vertical migration (DVM) of large zooplankton is a very common phenomenon in the pelagic zone of lakes and oceans. Although the underlying mechanisms of DVM are well understood, we lack experimental studies on the consequences of this behaviour for the zooplankton’s food resource—the phytoplankton. As large zooplankton species or individuals migrate downwards into lower and darker water strata by day and upwards into surface layers by night, a huge amount of herbivorous biomass moves through the water column twice a day. This migration must have profound consequences for the phytoplankton. It is generally assumed that migration supports an enhanced phytoplankton biomass and a change in the composition of the phytoplankton community towards smaller, edible algae in the epilimnion of a lake. We tested this assumption for the first time in field experiments by comparing phytoplankton biomass and community assemblage in mesocosms with and without artificially migrating natural stocks of Daphnia hyalina. We show that DVM can enhance phytoplankton biomass in the epilimnion and that it has a strong impact on the composition of a phytoplankton community leading to an advantage for small, edible algae. Our results support the idea that DVM of Daphnia can have strong effects on phytoplankton dynamics in a lake.  相似文献   

15.
We investigated the relative importance of a behavioural defence (refuge use through diel vertical migration) and a life history change (a reduced size at first reproduction) that are used by daphnids to decrease the risk of predation by visually hunting fish. We used an individual based model of a Daphnia population in a stratified lake to quantify the effects of these inducible defences on Daphnia predation-mortality and the resulting Daphnia population dynamics. Our analysis shows that diel vertical migration (DVM) confers a much stronger protection against fish predation than a reduced size at first reproduction (SFR). DVM allows daphnids to withstand a higher predation pressure in the epilimnion and it decelerates a Daphnia population decline more strongly than a reduced SFR. DVM effectively reduces the (P/B) flow of carbon from daphnids to fish.
Many theoretical studies have only considered the fitness benefits of DVM above 'staying up' in the epilimnion of a lake. Our results suggest that 'staying down' in the hypolimnion would confer an even stronger fitness benefit to Daphnia than DVM at times of peak predation risk. Daphnids that remain in the hypolimnion avoid the predation suffered by migrating daphnids around dusk and dawn. Staying down could prevent a Daphnia population decline, while DVM and a reduced SFR can only decelerate the decrease of Daphnia population densities under heavy fish predation. Staying down at high concentrations of fish infochemicals has in fact been observed within a variety of Daphnia clones and species, both in the laboratory and in stratified lakes.  相似文献   

16.
Diurnal vertical migration (DVM) of Daphnia hyalina in Lake Bled was most intense during summer stratification. The extent of DVM varied with the size of the animal and its reproductive state. Migration distances were shortest in immature specimens and longest in ovigerous females. During daytime, ovigerous females stayed deeper in the water column than females without ova or immatures. The daytime temperature of water at the median depth of the ovigerous females did not exceed 10 °C, even in the warmest season. At night they migrated upward to an environment which was warmer by as much as 9 °C.Laboratory observations indicate that specimen's size and water temperature determine the velocity of passive sinking, such that morning descent of the different groups of Daphnia can be explained by passive sinking alone.Our hypothesis is that the distribution of different groups of D. hyalina in Lake Bled is influenced by two types of predators: fish (Perca fluviatilis L. and Rutilus rutilus (L.)) and larvae of Chaoborus flavicans (Meig.), the latter appearing in the epilimnion during the night. Fish predation has a key-role at the beginning of thermal stratification. Supposing that in spring the gene pool of Daphnia consists of a mix of different genotypes, distributed at different depths during the day, fish predation combined with a presence of fish chemicals favored genotypes with a lower day-depth during the spring/summer period.  相似文献   

17.
Van Gool  Erik  Ringelberg  Joop 《Hydrobiologia》2003,491(1-3):301-307
During a short period of the year, Daphnia may perform a phenotypically induced diel vertical migration. For this to happen, light-induced swimming reactions must be enhanced both at dawn and at dusk. Enhanced swimming in response to light intensity increase can be elicited by fish-associated kairomone in the laboratory, if food is sufficiently available. However, during the light change at dusk the Daphnia are still in the hypolimnion, where no fish kairomone is present and both temperature and food availability is low. Still, what goes down must come up. This raises questions about how Daphnia tunes its light-induced swimming behaviour to prevailing conditions such that a normal diel vertical migration can be performed. We investigated the symmetry in behavioural mechanism underlying these diel vertical migrations in the hybrid Daphnia galeata × hyalina (Cladocera; Crustacea), with special interest for the environmental cues that are known to affect swimming in response to light increase. That is, we tested whether fish- associated kairomone, food availability, and temperature affected both swimming in response to light intensity increase and decrease similarly. We quantified swimming behaviour during a sequentially increased rate of light change. Vertical displacement velocity was measured and proved to be linearly related to the rate of the light change. The slope (PC) of the function depends on the value of the factors kairomone concentration, food availability, and temperature. The changes of the PC with kairomone concentration and with temperature were similar both at light intensity increases and decreases. The PC also increased with food concentration, although during light increases in a different way from during light intensity decreases. Low food availability inhibited swimming in response to light intensity increase, but enhanced swimming in response to light intensity decrease. Hence, ascent from the deep water layers with low food concentration at dusk is facilitated. These causal relations are part of a proximate decision-making mechanism which may help the individual Daphnia to tune migration to predation intensity and food availability.  相似文献   

18.
19.
Diurnal vertical migrations (DVM) behaviour of cladocerans was investigated in two mesotrophic Irish lakes connected by a canal, characterised by interesting differences in the presence of zooplanktivorous predators. In Doon Upper, fish (mostly juvenile perch and roach) and a little-studied phantom midge Mochlonyx fuliginosus (Chaoboridae) were found, but Doon Lower was solely inhabited by fish. As the presence of diverse predators may alter spatial avoidance behaviour of zooplankton prey in different ways, the aim of this study was to determine whether and how two predator types, fish and phantom midge larvae, have changed DVM pattern of cladocerans during day and night in Doon lakes. Two sampling series of phytoplankton, zooplankton, fish, and water physical analyses were conducted on 09–10 June and 19–20 September 2007 in both lakes. In the study conducted in June, under a similar distribution of M. fuliginosus and juvenile fish in Doon Upper, a reverse migration of Daphnia galeata was observed as a strategy allowing them to avoid both types of predators. However, in September, when M. fuliginosus lived in a 24 h refugium below the oxycline as a response to increasing predation risk posed by YOY fish penetrated the upper strata of water during day and night, reverse migrations of D. galeata were not clear. In Doon Lower, normal migration was observed as an advantageous behavioural response against visual predators (fish), in both large and small Cladocera species: D. galeata, Diaphanosoma branchyurum and Bosmina sp. Thus, our results indicate dissimilar migration patterns of D. galeata depending on the presence of one (Doon Lower) or two predators with different predation behaviour (Doon Upper).  相似文献   

20.
1. Different behavioural responses of planktonic animals to their main predators, fish, have been reported from shallow lakes. In north temperate lakes, large‐bodied zooplankton may seek refuge from predation among macrophytes, whereas in subtropical lakes, avoidance of macrophytes has been observed. The prevalent behaviour probably depends on the characteristics of the fish community, which in Mediterranean lakes is typically dispersed in both the open water zone and in the littoral, as in temperate lakes, and is dominated by small size classes, as in subtropical lakes. 2. We performed ‘habitat choice’ experiments to test the response of Daphnia magna to predation cues at both the horizontal and vertical level by mimicking a ‘shallow littoral’ zone with plants and a ‘deeper pelagic’ zone with sediments. 3. Initial separate response experiments showed that natural plants, artificial plants and predation cues all repelled D. magna in the absence of other stimuli, while sediments alone did not trigger any significant response by D. magna. 4. The habitat choice experiments showed that, in the presence of predation cues and absence of plants, Daphnia moved towards areas with sediment. In the presence of both plants and sediments, Daphnia moved away from the plants towards the sediments under both shallow and deep water treatment conditions. 5. Based on these results, we suggest that Daphnia in Mediterranean shallow lakes avoid submerged macrophytes and instead prefer to hide near the sediment when exposed to predation risk, as also observed in subtropical shallow lakes. This pattern is not likely to change with water level alterations, a common feature of lakes in the region, even if the effectiveness of the refuge may be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号