首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin-dependent kinases comprise the conserved machinery that drives progress through the cell cycle, but how they do this in mammalian cells is still unclear. To identify the mechanisms by which cyclin-cdks control the cell cycle, we performed a time-resolved analysis of the in vivo interactors of cyclins E1, A2, and B1 by quantitative mass spectrometry. This global analysis of context-dependent protein interactions reveals the temporal dynamics of cyclin function in which networks of cyclin-cdk interactions vary according to the type of cyclin and cell-cycle stage. Our results explain the temporal specificity of the cell-cycle machinery, thereby providing a biochemical mechanism for the genetic requirement for multiple cyclins in vivo and reveal how the actions of specific cyclins are coordinated to control the cell cycle. Furthermore, we identify key substrates (Wee1 and c15orf42/Sld3) that reveal how cyclin A is able to promote both DNA replication and mitosis.  相似文献   

2.
3.
4.
The cell cycle is a sequence of biochemical events that are controlled by complex but robust molecular machinery. This enables cells to achieve accurate self-reproduction under a broad range of different conditions. Environmental changes are transmitted by molecular signalling networks, which coordinate their action with the cell cycle. The cell cycle process and its responses to environmental stresses arise from intertwined nonlinear interactions among large numbers of simpler components. Yet, understanding of how these pieces fit together into a coherent whole requires a systems biology approach. Here, we present a novel mathematical model that describes the influence of osmotic stress on the entire cell cycle of S. cerevisiae for the first time. Our model incorporates all recently known and several proposed interactions between the osmotic stress response pathway and the cell cycle. This model unveils the mechanisms that emerge as a consequence of the interaction between the cell cycle and stress response networks. Furthermore, it characterises the role of individual components. Moreover, it predicts different phenotypical responses for cells depending on the phase of cells at the onset of the stress. The key predictions of the model are: (i) exposure of cells to osmotic stress during the late S and the early G2/M phase can induce DNA re-replication before cell division occurs, (ii) cells stressed at the late G2/M phase display accelerated exit from mitosis and arrest in the next cell cycle, (iii) osmotic stress delays the G1-to-S and G2-to-M transitions in a dose dependent manner, whereas it accelerates the M-to-G1 transition independently of the stress dose and (iv) the Hog MAPK network compensates the role of the MEN network during cell division of MEN mutant cells. These model predictions are supported by independent experiments in S. cerevisiae and, moreover, have recently been observed in other eukaryotes.  相似文献   

5.
The ultimate destiny of a cell to undergo division, differentiation, survival, and death results from an intricate balance between multiple regulators including oncogenes, tumor suppressor genes, and cell cycle associated proteins. Deregulation of the cell cycle machinery switches the phenotype from a normal cell to a cancerous cell. Fundamental alterations of tumor suppressor genes may result in an unregulated cell cycle with the accumulation of mutations and eventual neoplastic transformation. As such, one may define cancer as a genetic disease of the cell cycle. In this review, we will emphasize our current understanding of how the cell cycle machinery maintains cellular homeostasis by studying the consequences of its deregulation.  相似文献   

6.
The mitogen-activated and stress-activated protein kinases transduce signals from plasma membrane signalling machinery into the nucleus to modulate gene expression. By regulating the genomic response to environmental cues (growth factors, stresses) these pathways determine whether a cell re-enters the cell cycle, undergoes cell cycle arrest, senescence or apoptosis. We are particularly interested in how these pathways integrate with each other, and interact with the cell cycle machinery to achieve these discrete biological responses.  相似文献   

7.
8.
The shoot apical meristem is a group of rapidly dividing cells that generate all aerial parts of the plant. It is a highly organised structure, which can be divided into functionally distinct domains, characterised by specific proliferation rates of the individual cells. Genetic studies have enabled the identification of regulators of meristem function. These factors are involved in the formation and maintenance of the meristem, as well as in the formation of the primordia. Somehow, they must also govern cell proliferation rates within the shoot apex. Possible links between meristem regulators and the cell cycle machinery will be discussed. In order to analyse the role of cell proliferation in development, cell cycle gene expression has been perturbed using transgenic approaches and mutation. The effect of these alterations on growth and development at the shoot apex will be presented. Together, these studies give a first insight into the regulatory networks controlling the cell cycle and into the significance of cell proliferation in plant development.  相似文献   

9.
The cell-division cycle has to be regulated in both time and space. In the time dimension, the cell ensures that mitosis does not begin until DNA replication is completed and any damaged DNA is repaired, and that DNA replication normally follows mitosis. This is achieved by the synthesis and destruction of specific cell-cycle regulators at the right time in the cell cycle. In the spatial dimension, the cell coordinates dramatic reorganizations of the subcellular architecture at the entrance to and exit from mitosis, largely through the actions of protein kinases and phosphatases that are often localized to specific subcellular structures. Evidence is now accumulating to suggest that the spatial organization of cell-cycle regulators is also important in the temporal control of the cell cycle. Here I will focus on how the locations of the main components of the cell-cycle machinery are regulated as part of the mechanism by which the cell controls when and how it replicates and divides.  相似文献   

10.
The elegant choreography of metazoan development demands exquisite regulation of cell-division timing, orientation, and asymmetry. In this review, we discuss studies in Drosophila and C. elegans that reveal how the cell cycle machinery, comprised of cyclin-dependent kinase (CDK) and cyclins functions as a master regulator of development. We provide examples of how CDK/cyclins: (1) regulate the asymmetric localization and timely destruction of cell fate determinants; (2) couple signaling to the control of cell division orientation; and (3) maintain mitotic zones for stem cell proliferation. These studies illustrate how the core cell cycle machinery should be viewed not merely as an engine that drives the cell cycle forward, but rather as a dynamic regulator that integrates the cell-division cycle with cellular differentiation, ensuring the coherent and faithful execution of developmental programs.  相似文献   

11.
12.
13.
Pancreatic islets consist of 60-80% beta cells, which secrete insulin, a hormone of profound importance in the regulation of carbohydrate, fat and protein metabolism. Beta cell death and/or dysfunction result in an insufficient amount of insulin that leads to high glucose levels in the blood, a metabolic disorder known as Diabetes mellitus. Many studies aiming to establish new therapeutic applications for this disorder are targeted at understanding and manipulating the mechanisms of beta cell proliferation and function. The present comprehensive review summarizes the advances in the field of beta cell renewal and focuses on three fundamental issues: (i) identification of the cellular origins of new beta cells in the adult, (ii) regulation of beta cell proliferation, and (iii) downstream signaling events controlling the cell cycle machinery. Although the source of new adult beta cells is still being debated, recent findings in mice show an important contribution of beta cell proliferation to adult beta cell mass. In conjunction with describing characterized beta cell mitogens and components of the beta cell cycle machinery, we discuss how manipulating the proliferative potential of beta cells could provide novel methods for expanding beta cell mass. Such an expansion could be achieved either through in vitro systems, where functional beta cells could be generated, propagated and further used for transplantation, or in vivo, through directed beta cell renewal from sources in the organism. Once established, these methods would have profound benefits for diabetic patients.  相似文献   

14.
Ohnuma S  Harris WA 《Neuron》2003,40(2):199-208
For a long time, it has been understood that neurogenesis is linked to proliferation and thus to the cell cycle. Recently, the gears that mediate this linkage have become accessible to molecular investigation. This review describes some of the progress that has been made in understanding how the molecular machinery of the cell cycle is used in the processes of size regulation in the brain, histogenesis, neuronal differentiation, and the maintenance of stem cells.  相似文献   

15.
16.
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and β-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a “GPCR signature” impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.  相似文献   

17.
Cell division is a metabolically demanding process, requiring the production of large amounts of energy and biomass. Not surprisingly therefore, a cell''s decision to initiate division is co-determined by its metabolic status and the availability of nutrients. Emerging evidence reveals that metabolism is not only undergoing substantial changes during the cell cycle, but it is becoming equally clear that metabolism regulates cell cycle progression. Here, we overview the emerging role of those metabolic pathways that have been best characterized to change during or influence cell cycle progression. We then studied how Notch signaling, a key angiogenic pathway that inhibits endothelial cell (EC) proliferation, controls EC metabolism (glycolysis) during the cell cycle.  相似文献   

18.
19.
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号