首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the Farnsworth-Munsell 100-hue (FM 100) test and Mollon-Reffin (MR) test to evaluate the colour vision of 93 subjects, 30.4 ± 9.7 years old, who had red-green congenital colour vision deficiencies. All subjects lived in Belém (State of Pará, Brazil) and were selected by the State of Pará Traffic Department. Selection criteria comprised the absence of visual dysfunctions other than Daltonism and no history of systemic diseases that could impair the visual system performance. Results from colour vision deficient were compared with those from 127 normal trichromats, 29.3 ± 10.3 years old. For the MR test, measurements were taken around five points of the CIE 1976 colour space, along 20 directions irradiating from each point, in order to determine with high-resolution the corresponding colour discrimination ellipses (MacAdam ellipses). Three parameters were used to compare results obtained from different subjects: diameter of circle with same ellipse area, ratio between ellipse’s long and short axes, and ellipse long axis angle. For the FM 100 test, the parameters were: logarithm of the total number of mistakes and positions of mistakes in the FM diagram. Data were also simultaneously analysed in two or three dimensions as well as by using multidimensional cluster analysis. For the MR test, Mollon-Reffin Ellipse #3 (u’ = 0.225, v’ = 0.415) discriminated more efficiently than the other four ellipses between protans and deutans once it provided larger angular difference in the colour space between protan and deutan confusion lines. The MR test was more sensitive than the FM 100 test. It separated individuals by dysfunctional groups with greater precision, provided a more sophisticated quantitative analysis, and its use is appropriate for a more refined evaluation of different phenotypes of red-green colour vision deficiencies.  相似文献   

2.
We have monitored the development of infant colour vision by measuring chromatic contrast sensitivity and acuity in eight young infants over a period of 6 months. Steady-state visual evoked potentials (VEPS) were recorded in response to both chromatic (red-green) and luminance (red-black or green-black) patterns that were reversed in contrast over time. For most infants, no response could be obtained to chromatic stimuli of any size or contrast before 5 weeks of age, although luminance stimuli of 20% contrast gave reliable responses at that age. When responses to chromatic stimuli first appeared, they could be obtained only with stimuli of very low spatial frequency, 20 times lower than the acuity for luminance stimuli. Both contrast sensitivity and acuity for chromatic stimuli increased steadily, more rapidly than for luminance stimuli. As the spectral selectivities of infant cones are similar to those of adults, the difference in rate of development of luminance and chromatic contrast sensitivity and acuity stimuli probably reflects neural development of the infant colour system.  相似文献   

3.
We report measurements on discrimination of orientation and magnification made for elements differentiated in colour and/or luminance from their background. By performing measurements at a series of background luminances and for fixed luminance of the elements, we show that with colour contrast, discrimination for both spatial parameters is unimpaired when the background is at isoluminance with the elements. Under simple luminance contrast, however, these discriminations become poorer when the background luminance is within some +/- 5% of that of the elements, and are completely absent when the two values are the same. A deuteranomalous subject is unable to make the spatial discrimination around the isoluminance point for colour contrasts which are too small for him to distinguish, but for which subjects with normal colour vision maintain spatial discriminations at isoluminance. This observation establishes that the physiological mechanisms of normal colour vision, rather than stimulus artefacts, mediate the observed spatial discriminations. We conclude that the visual processing of colour and spatial parameters such as orientation and magnification are intrinsically related to each other.  相似文献   

4.
The effects of glaucoma on binocular visual sensitivity for the detection of various stimulus attributes are investigated at the fovea and in four paracentral retinal regions. The study employed a number of visual stimuli designed to isolate the processing of various stimulus attributes. We measured absolute contrast detection thresholds and functional contrast sensitivity by using Landolt ring stimuli. This psychophysical Landolt C-based contrast test of detection and gap discrimination allowed us to test parafoveally at 6 ° from fixation and foveally by employing interleaved testing locations. First-order motion perception was examined by using moving stimuli embedded in static luminance contrast noise. Red/green (RG) and yellow/blue (YB) colour thresholds were measured with the Colour Assessment and Diagnosis (CAD) test, which utilises random dynamic luminance contrast noise (± 45 %) to ensure that only colour and not luminance signals are available for target detection. Subjects were normal controls (n?=?65) and glaucoma patients with binocular visual field defects (n?=?15) classified based on their Humphrey Field Analyzer mean deviation (MD) scores. The impairment of visual function varied depending on the stimulus attribute and location tested. Progression of loss was noted for all tests as the degree of glaucoma increased. For subjects with mild glaucoma (MD ?0.01 dB to ?6.00 dB) significantly more data points fell outside the normal age-representative range for RG colour thresholds than for any other visual test, followed by motion thresholds. This was particularly the case for the parafoveal data compared with the foveal data. Thus, a multifaceted measure of binocular visual performance, incorporating RG colour and motion test at multiple locations, might provide a better index for comparison with quality of life measures in glaucoma.  相似文献   

5.
Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m2. We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m2, as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m2, spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision.  相似文献   

6.
Current opinion holds that human colour vision is mediated primarily via a colour-opponent pathway that carries information about both wavelength and luminance contrast (type I). However, some authors argue that chromatic sensitivity may be limited by a different geniculostriate pathway, which carries information about wavelength alone (type II). We provide psychophysical evidence that both pathways may contribute to the perception of moving, chromatic targets in humans, depending on the nature of the visual discrimination. In experiment 1, we show that adaptation to drifting, red-green stimuli causes reductions in contrast sensitivity for both the detection and direction discrimination of moving chromatic targets. Importantly, the effects of adaptation are not directionally specific. In experiment 2, we show that adaptation to luminance gratings results in reduced sensitivity for the direction discrimination, but not the detection of moving chromatic targets. We suggest that sensitivity for the direction discrimination of chromatic targets is limited by a colour-opponent pathway that also conveys luminance-contrast information, whereas the detection of such targets is limited by a pathway with access to colour information alone. The properties of these pathways are consistent with the known properties of type-I and type-II neurons of the primate parvocellular lateral geniculate nucleus and their cortical projections. These findings may explain the known differences between detection and direction discrimination thresholds for chromatic targets moving at low to moderate velocities.  相似文献   

7.
姚军财 《生物磁学》2012,(14):2663-2667
对比度敏感是描述人眼视觉系统空间特性的主要指标之一,对比度敏感函数是反映不同条件下的对比度敏感与空间频率之间的关系。人眼对比度敏感数据的测量受到环境亮度较大的影响,为了研究常用办公环境条件下的人眼对比度敏感情况,对6位青年在环境亮度分别为153,312,470 cd/m2和暗室条件下,在距离为2米处观测11种空间频率的矩形光栅进行测量,光栅用显示器进行显示,其平均亮度分别为60和90 cd/m2。实验结果表明,对于相同频率的光栅,人眼对比度敏感程度随着环境亮度的增加而减小,而且人眼在暗室环境下比在办公环境条件下对亮度光栅更敏感;但是在观测平均亮度为60cd/m2的光栅时,人眼特殊地对在环境亮度为312 cd/m2的条件下更敏感。  相似文献   

8.
对比度敏感是描述人眼视觉系统空间特性的主要指标之一,对比度敏感函数是反映不同条件下的对比度敏感与空间频率之间的关系。人眼对比度敏感数据的测量受到环境亮度较大的影响,为了研究常用办公环境条件下的人眼对比度敏感情况,对6位青年在环境亮度分别为153,312,470 cd/m2和暗室条件下,在距离为2米处观测11种空间频率的矩形光栅进行测量,光栅用显示器进行显示,其平均亮度分别为60和90 cd/m2。实验结果表明,对于相同频率的光栅,人眼对比度敏感程度随着环境亮度的增加而减小,而且人眼在暗室环境下比在办公环境条件下对亮度光栅更敏感;但是在观测平均亮度为60cd/m2的光栅时,人眼特殊地对在环境亮度为312 cd/m2的条件下更敏感。  相似文献   

9.
Many insects’ motion vision is achromatic and thus dependent on brightness rather than on colour contrast. We investigate whether this is true of the butterfly Papilio xuthus, an animal noted for its complex retinal organization, by measuring head movements of restrained animals in response to moving two-colour patterns. Responses were never eliminated across a range of relative colour intensities, indicating that motion can be detected through chromatic contrast in the absence of luminance contrast. Furthermore, we identify an interaction between colour and contrast polarity in sensitivity to achromatic patterns, suggesting that ON and OFF contrasts are processed by two channels with different spectral sensitivities. We propose a model of the motion detection process in the retina/lamina based on these observations.  相似文献   

10.
Summary Visual pigment absorption and spectral sensitivity are calculated for a model rhabdom based on theDeilephila rhabdom. The effect of different sky light intensity spectra on absorption and spectral sensitivity is examined, and the importance of the receptor arrangement for colour vision discussed. The quality of colour perception which can be expected for such an eye is estimated. The calculations reveal, firstly, a balance between the spectral bandwidths of rhodopsin absorption spectra and the distances between their maxima, which is of great significance with respect to colour vision. Secondly, they show that the quality of colour discrimination for dim light, at luminance levels between 0.1 and 10 cd/m2, is comparable to the performance of the human eye at much higher levels of luminance.  相似文献   

11.
Color and luminance contrasts attract independent attention   总被引:2,自引:0,他引:2  
Paying attention can improve vision in many ways, including some very basic functions such as contrast discrimination, a task that probably reflects very early levels of visual processing. Electrophysiological, psychophysical, and imaging studies on humans as well as single recordings in monkey show that attention can modulate the neuronal response at an early stage of visual processing, probably by acting on the response gain. Here, we measure incremental contrast thresholds for luminance and color stimuli to derive the contrast response of early neural mechanisms and their modulation by attention. We show that, for both cases, attention improves contrast discrimination, probably by multiplicatively increasing the gain of the neuronal response to contrast. However, the effects of attention are highly specific to the visual modality: concurrent attention to a competing luminance, but not chromatic pattern, greatly impedes luminance contrast discrimination; and attending to a competing chromatic, but not luminance, task impedes color contrast discrimination. Thus, the effects of attention are highly modality specific, implying separate attentional resources for different fundamental visual attributes at early stages of visual processing.  相似文献   

12.
PurposeTo investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2).MethodsThe Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions.ResultsDry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners.ConclusionsExposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour) and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance.  相似文献   

13.
Stimuli from different sensory modalities are thought to be processed initially in distinct unisensory brain areas prior to convergence in multisensory areas. However, signals in one modality can influence the processing of signals from other modalities and recent studies suggest this cross-modal influence may occur early on, even in ‘unisensory’ areas. Some recent psychophysical studies have shown specific cross-modal effects between touch and vision during binocular rivalry, but these cannot completely rule out a response bias. To test for genuine cross-modal integration of haptic and visual signals, we investigated whether congruent haptic input could influence visual contrast sensitivity compared to incongruent haptic input in three psychophysical experiments using a two-interval, two-alternative forced-choice method to eliminate response bias. The initial experiment demonstrated that contrast thresholds for a visual grating were lower when exploring a haptic grating that shared the same orientation compared to an orthogonal orientation. Two subsequent experiments mapped the orientation and spatial frequency tunings for the congruent haptic facilitation of vision, finding a clear orientation tuning effect but not a spatial frequency tuning. In addition to an increased contrast sensitivity for iso-oriented visual-haptic gratings, we found a significant loss of sensitivity for orthogonally oriented visual-haptic gratings. We conclude that the tactile influence on vision is a result of a tactile input to orientation-tuned visual areas.  相似文献   

14.
Three-dot alignment discrimination thresholds were determined for blobs with Gaussian spatial and temporal contrast envelopes. The stimuli were presented at detection threshold luminance contrast. Thresholds were determined as a function of the blur parameter of the stimuli. This was done for a range of eccentricities in the visual field (from 45 degrees nasal to 65 degrees temporal). The thresholds were corrected for variations of the stimulus extent with the blur parameter. The results were used to estimate the local spatial scale for three-dot alignment acuity. This was done by a method recently introduced by Watson (1987). It was found that the local spatial scale for three-dot alignment acuity is approximately linearly proportional to eccentricity.  相似文献   

15.
The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers adjusted the amplitude spectra of luminance or chromatic images until they appeared correctly focused, and repeated these measurements either before or after adaptation to blurred or sharpened images or in the presence of blurred or sharpened surrounds. Prior adaptation induced large and distinct changes in perceived focus for both luminance and chromatic patterns, suggesting that luminance and chromatic mechanisms are both able to adjust to changes in the level of blur. However, judgments of focus were more variable for color, and unlike luminance there was little effect of surrounding spatial context on perceived blur. In additional measurements we explored the effects of adaptation on threshold contrast sensitivity for luminance and color. Adaptation to filtered noise with a 1/f spectrum characteristic of natural images strongly and selectively elevated thresholds at low spatial frequencies for both luminance and color, thus transforming the chromatic contrast sensitivity function from lowpass to nearly bandpass. These threshold changes were found to reflect interactions between different spatial scales that bias sensitivity against the lowest spatial grain in the image, and may reflect adaptation to different stimulus attributes than the attributes underlying judgments of image focus. Our results suggest that spatial sensitivity for variations in color can be strongly shaped by adaptation to the spatial structure of the stimulus, but point to dissociations in these visual adjustments both between luminance and color and different measures of spatial sensitivity.  相似文献   

16.
Young children do not integrate visual and haptic form information   总被引:1,自引:0,他引:1  
Several studies have shown that adults integrate visual and haptic information (and information from other modalities) in a statistically optimal fashion, weighting each sense according to its reliability [1, 2]. When does this capacity for crossmodal integration develop? Here, we show that prior to 8 years of age, integration of visual and haptic spatial information is far from optimal, with either vision or touch dominating totally, even in conditions in which the dominant sense is far less precise than the other (assessed by discrimination thresholds). For size discrimination, haptic information dominates in determining both perceived size and discrimination thresholds, whereas for orientation discrimination, vision dominates. By 8-10 years, the integration becomes statistically optimal, like adults. We suggest that during development, perceptual systems require constant recalibration, for which cross-sensory comparison is important. Using one sense to calibrate the other precludes useful combination of the two sources.  相似文献   

17.
The human visual system shows a relatively greater response to low spatial frequencies of chromatic spatial modulation than to luminance spatial modulation. However, previous work has shown that this differential sensitivity to low spatial frequencies is not reflected in any differential luminance and chromatic content of general natural scenes. This is contrary to the prevailing assumption that the spatial properties of human vision ought to reflect the structure of natural scenes. Now, colorimetric measures of scenes suggest that red-green (and perhaps blue-yellow) color discrimination in primates is particularly suited to the encoding of specific scenes: reddish or yellowish objects on a background of leaves. We therefore ask whether the spatial, as well as chromatic, properties of such scenes are matched to the different spatial-encoding properties of color and luminance modulation in human vision. We show that the spatiochromatic properties of a wide class of scenes, which contain reddish objects (e.g., fruit) on a background of leaves, correspond well to the properties of the red-green (but not blue-yellow) systems in human vision, at viewing distances commensurate with typical grasping distance. This implies that the red-green system is particularly suited to encoding both the spatial and the chromatic structure of such scenes.  相似文献   

18.
Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet‐sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV‐sensitive (UVS) cones maximally sensitive at 360–370 nm. The reasons for VS–UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS‐cone vision is linked to plumage colours so that visual sensitivity and feather coloration are ‘matched’. This leads to the specific prediction that UVS‐cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS‐bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS‐cone vision and plumage colour evolution. Instead, we suggest that UVS‐cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones.  相似文献   

19.
Pseudoisochromatic plates are among the most popular tests for defective colour vision. They are particularly good for screening but are less good in assessing the degree and type of the colour vision defect. To select colours for use in diagnostic plates a large number of colour defective subjects have made colour matches with the Lovibond Tintometer and the isochromatic data collected. Pseudoisochromatic plates have been printed using pairs of colours only and incorporating both a random dot and a regular dot format. These plates have proved effective in a clinical trial. Not only must pairs of inks be carefully selected to lie upon appropriate isochromatic lines but the luminance contrast between the two colours must be kept within 5%. Failure to control luminance contrast is as much a source of error in currently available pseudoischromatic tests as the inappropriate use of colour.  相似文献   

20.
ABSTRACT

This study evaluated visual sensitivity to luminance contrast during a daily period. Twenty-eight young male adults (M = 24.85; SD = 2.4) with normal color vision and 20/20 visual acuity participated in this study. The circadian pattern was assessed using the Karolinska Sleepiness Scale (KSS), the Pittsburgh Sleep Quality Index (PSQI), and a sleep diary. To measure the luminance contrast, we used version 11.0 of the Metropsis software with sine-element frequency stimuli for spatial frequencies of 0.2, 0.6, 1, 3.1, 6.1, 8.8, 13.2, and 15.6 cycles per degree of visual angle (cpd). The stimuli were presented on a 19-inch color cathode ray tube (CRT) video monitor with a resolution of 1024 × 786 pixels, an update rate of 100 Hz, and a photopic luminance of 39.6 cd/m2. There was a significant difference in KSS on the weekdays [χ2(2) = 20.27; p = .001] and in the luminance contrast for frequencies of 13.2 cpd [χ2(2) = 8.27; p = .001] and 15.6 cpd [χ2(2) = 13.72; p = .041]. The results showed greater stability of the measurement during the afternoon and a reduction in the visual sensitivity in the high spatial frequencies during the night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号